1.1.2回归分析的基本思想及其初步应用new

1.1.2回归分析的基本思想及其初步应用new

ID:18715755

大小:505.50 KB

页数:4页

时间:2018-09-21

1.1.2回归分析的基本思想及其初步应用new_第1页
1.1.2回归分析的基本思想及其初步应用new_第2页
1.1.2回归分析的基本思想及其初步应用new_第3页
1.1.2回归分析的基本思想及其初步应用new_第4页
资源描述:

《1.1.2回归分析的基本思想及其初步应用new》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、学校:临清一中学科:数学编写人:金荣辉审稿人:贾志安1.1.2回归分析的基本思想及其初步应用课前预习学案一、预习目标:回归分析的基本思想、方法及初步应用.二、预习内容:1.两个变量有线性相关关系且正相关,则回归直线方程中,的系数(  )  A.  B.  C.    D.2.两个变量有线性相关关系且残差的平方和等于0,则(  )A.样本点都在回归直线上  B.样本点都集中在回归直线附近C.样本点比较分散     D.不存在规律课内探究学案一、学习要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.

2、学习重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.学习难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.二、学习过程1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.3.教学总偏差平方和、残差平方和、回归平方和:(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即.残差平

3、方和:回归值与样本值差的平方和,即.回归平方和:相应回归值与样本均值差的平方和,即.(2)学习要领:①注意、、的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数来刻画回归的效果,它表示解释变量对预报变量变化的贡献率.的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.[来源:学§科§网Z§X§X§K]4.典型例题例2关于与有如下数据:    

4、2  4  5  6  8    30  40  60  50  70为了对、两个变量进行统计分析,现有以下两种线性模型:,,试比较哪一个模型拟合的效果更好.分析:既可分别求出两种模型下的总偏差平方和、残差平方和、回归平方和,也可分别求出两种模型下的相关指数,然后再进行比较,从而得出结论.[来源:学*科*网]5.小结:分清总偏差平方和、残差平方和、回归平方和,初步了解如何评价两个不同模型拟合效果的好坏.课后练习与提高假设美国10家最大的工业公司提供了以下数据:公司销售总额经x1/百万美元利润x2/百万美元通用汽车12

5、6974[来源:学科网]4224福特96933[来源:学。科。网Z。X。X。K]3835埃克森866563510IBM634383758通用电气552643939美孚509761809菲利普·莫利斯390692946克莱斯勒36156359杜邦352092480德士古324162413(1)作销售总额和利润的散点图,根据该图猜想它们之间的关系应是什么形式;(2)建立销售总额为解释变量,利润为预报变量的回归模型,并计算残差;(3)你认为这个模型能较好地刻画销售总额和利润之间的关系吗?请说明理由。学校:临清一中学科:数学

6、编写人:金荣辉审稿人:张林1.1.2回归分析的基本思想及其初步应用教学要求:通过典型案例的探究,进一步了解回归分析的基本思想、方法及初步应用.教学重点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.教学难点:了解评价回归效果的三个统计量:总偏差平方和、残差平方和、回归平方和.教学过程:一、复习准备:1.由例1知,预报变量(体重)的值受解释变量(身高)或随机误差的影响.2.为了刻画预报变量(体重)的变化在多大程度上与解释变量(身高)有关?在多大程度上与随机误差有关?我们引入了评价回归效果的三个统计

7、量:总偏差平方和、残差平方和、回归平方和.二、讲授新课:1.教学总偏差平方和、残差平方和、回归平方和:(1)总偏差平方和:所有单个样本值与样本均值差的平方和,即.残差平方和:回归值与样本值差的平方和,即.回归平方和:相应回归值与样本均值差的平方和,即.(2)学习要领:①注意、、的区别;②预报变量的变化程度可以分解为由解释变量引起的变化程度与残差变量的变化程度之和,即;③当总偏差平方和相对固定时,残差平方和越小,则回归平方和越大,此时模型的拟合效果越好;④对于多个不同的模型,我们还可以引入相关指数来刻画回归的效果,它表

8、示解释变量对预报变量变化的贡献率.的值越大,说明残差平方和越小,也就是说模型拟合的效果越好.2.教学例题:例2关于与有如下数据:    2  4  5  6  8    30  40  60  50[来源:学科网]  70为了对、两个变量进行统计分析,现有以下两种线性模型:,,试比较哪一个模型拟合的效果更好.分析:既可分别求出两种模型下的总偏差

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。