案例分析_计量经济学

案例分析_计量经济学

ID:18713742

大小:1.96 MB

页数:48页

时间:2018-09-20

案例分析_计量经济学_第1页
案例分析_计量经济学_第2页
案例分析_计量经济学_第3页
案例分析_计量经济学_第4页
案例分析_计量经济学_第5页
资源描述:

《案例分析_计量经济学》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、案例分析1一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元,最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。

2、影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。二、模型设定我们研究的对象是各地区居民消费的差异。居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变

3、量。所以模型的被解释变量Y选定为“城市居民每人每年的平均消费支出”。因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。因此建立的是2002年截面数据模型。影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。因此这些其他因素可

4、以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。从2002年《中国统计年鉴》中得到表2.5的数据:表2.52002年中国各地区城市居民人均年消费支出和可支配收入地区城市居民家庭平均每人每年消费支出(元)Y城市居民人均年可支配收入(元)X北京天津河北山西内蒙古辽宁吉林黑龙江上海江苏浙江安徽福建江西山东河南湖北湖南广东广西海南重庆四川贵州云南西藏陕西甘肃青海10284.607191.965069.284710.964859.885342.644973

5、.884462.0810464.006042.608713.084736.526631.684549.325596.324504.685608.925574.728988.485413.445459.646360.245413.084598.285827.926952.445278.045064.245042.5212463.929337.566679.685234.356051.066524.526260.166100.5613249.808177.6411715.606032.409189.366334.647614.366245.406788.526958.561

6、1137.207315.326822.727238.046610.805944.087240.568079.126330.846151.446170.52宁夏新疆6104.925636.406067.446899.64作城市居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的散点图,如图2.12:图2.12从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立的计量经济模型为如下线性模型:三、估计参数假定所建模型及随机扰动项满足古典假定,可以用OLS法估计其参数。运用计算机软件EViews作计量经济

7、分析十分方便。利用EViews作简单线性回归分析的步骤如下:1、建立工作文件首先,双击EViews图标,进入EViews主页。在菜单一次点击FileNewWorkfile,出现对话框“WorkfileRange”。在“Workfilefrequency”中选择数据频率:Annual(年度)Weekly(周数据)Quartrly(季度)Daily(5dayweek)(每周5天日数据)SemiAnnual(半年)Daily(7dayweek)(每周7天日数据)Monthly(月度)Undatedorirreqular(未注明日期或不规则的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。