自适应变步长BP神经网络在水质评价中的应用

自适应变步长BP神经网络在水质评价中的应用

ID:18571717

大小:182.95 KB

页数:5页

时间:2018-09-18

自适应变步长BP神经网络在水质评价中的应用_第1页
自适应变步长BP神经网络在水质评价中的应用_第2页
自适应变步长BP神经网络在水质评价中的应用_第3页
自适应变步长BP神经网络在水质评价中的应用_第4页
自适应变步长BP神经网络在水质评价中的应用_第5页
资源描述:

《自适应变步长BP神经网络在水质评价中的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、水利学报2002年10月SHUILIXUEBAO第10期文章编号:05599350(2002)10011905自适应变步长BP神经网络在水质评价中的应用11黄胜伟,董曼玲(1山东农业大学水利土木学院,山东,泰安市271018)摘要:为克服传统的BP网络的不足,采用自适应变步长算法(ABPM)来训练前馈人工神经网络。根据黄河流域的大汶河水系的水质监测的数据,建立了一个对地面水质进行判别的多层前馈网络数学模型。以地面水质七项污染指标为训练样本,对网络进行训练,并将训练好的网络用于水质进行评价,将计算结果与BP网络评价结果、单因子评价结果进行了

2、比较分析。结果表明,ABPM神经网络方法收敛速度较快,预测精度很高,为水质评价提供了一种新方法。关键词:人工神经网络;BP网络;自适应变步长算法(ABPM);水质评价;中图分类号:P6417;TP3016文献标识码:A由于影响水质的因素较多,目前用物理方法进行水质评价存在一些困难。70年代我国使用的是综合污染指标法的硬性分级划分,目前使用的是灰色和模糊系统,如灰色集类法、模糊综合评判[1]法等。30多年来在评价原理的科学性和实际评价结论的合理性等方面都有了长足的发展。然而,灰色和模糊系统两大类方法都仍然存在一些缺陷,如都需要设计若干不同的效用函数

3、(灰色系统的白化函数、模糊数学的隶属函数等)以及人为地给定各评价指标的权重(或权函数)等。这些效用函数和指标权重的给定往往因人而异,造成评价模式难以通用,而且增加了应用的困难和人为臆断因素对结论的影响。事实上,在评价指标确定后,水质评价的过程是把这些指标的监测值与标准值进行比较和分析,在此基础上判断其与哪一级分类标准更接近。因此,水质综合评价属于模式识别问题。当[2]前,迅速发展的人工神经网络已在模式识别中广泛应用。人工神经网络是近几年来发展起来的一门新兴学科,它是一种大规模并行分布处理的非线性系统,可以处理那些难以用数学模型描述的系统,可以逼近任何非线性的特性,具有

4、很强的自适应、自学习、联想记忆、高度容错和并行处理能力,使得神经网络理论的应用已经渗透到了各个领域。近年[2]来,人工神经网络在水质分析和评价中的应用越来越广泛,并取得良好效果。在这些应用中,纵观应用于模式识别的神经网络,BP网络是最有效、最活跃的方法之一。笔者根据黄河流域大汶河水系水质监测的条件,建立了一个对地表水质进行判别的多层前馈网络数学模型。以地表水质7项污染指标为训练样本,利用自适应变步长BP神经网络(即ABPM网)进行训练,并将训练好的网络来对水质进行评价。1BP算法及其改进11BP网络特点多层前向网络的权值学习常采用误差逆传播学习算法(Error

5、BackPropagation简称BP)。为了简单起见,将采用这一学习算法进行训练的多层前向网络简称为BP网络。在具体应用该网络时分为网络训练及网络工作2个阶段。在网络训练阶段,根据给定的训练模式,按照模式的顺收稿日期:20010703作者简介:黄胜伟(1965-),男,安徽安庆人,副教授,博士,从事人工神经网络建模和可视化研究。!119!传播∀误差逆传播∀记忆训练∀学习收敛4个过程进行网络权值(包括阈值)的训[2]练。在网络的工作阶段,根据训练好的网络权值及给定的输入向量,按照模式顺传播方式求得与输入向量相对应的输出向量的解答。BP算法是一种比较成熟的

6、有指导的训练方法,是一个单向传播的多层前馈网络。它包含输入层、隐含层、输出层。同层节点之间不连接。输入信号从输入层节点,依次传过各隐含层节点,然后传到输出层节点,每一层节点的输出只影响下一层节点的输入。网络训练目标是使误差函数E最小,E的定义如下:12E=2##(tjp-Ojp)=#EP(1)式中:E为网络输出误差,P代表第P个样本,j为输出单元数,tjp为单元期望输出,Ojp为单元的实2际输出,(tjp-Ojp)输出层第j个神经元在模式P作用下的实际输出和期望输出之差的平方。12BP算法存在的问题BP算法的基本形式为[3]:W(k+1)=W(k)+D(k)(

7、2)式中:W(k)为时刻的权值;为学习率;D(k)=-E/W(k)为k时刻的负梯度。用三层BP网络可以任意逼近任何连续函数,但是它主要存在如下缺点:(1)从数学上看,它可归结为一非线性的梯度优化问题,因此不可避免地存在局部极小问题;(2)学习算法的收敛速度慢,通常需要上千次或更多;(3)网络结构为前向结构,没有反馈连接,因此它是一非线性映射系统。13BP算法的改进(ABPM算法)由于BP算法存在以上的缺陷,因而用BP网络训练网络时常常会出现收敛慢、振荡和陷入局部极小等问题。因此,采用引入动量项的自适应变步长来调整学习率的改进算法(即ABP

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。