Paraphrase Acquisition via Crowdsourcing and Machine Learning基于众包和机器学习的释义获取

Paraphrase Acquisition via Crowdsourcing and Machine Learning基于众包和机器学习的释义获取

ID:18568564

大小:1.61 MB

页数:22页

时间:2018-09-18

Paraphrase Acquisition via Crowdsourcing and Machine Learning基于众包和机器学习的释义获取_第1页
Paraphrase Acquisition via Crowdsourcing and Machine Learning基于众包和机器学习的释义获取_第2页
Paraphrase Acquisition via Crowdsourcing and Machine Learning基于众包和机器学习的释义获取_第3页
Paraphrase Acquisition via Crowdsourcing and Machine Learning基于众包和机器学习的释义获取_第4页
Paraphrase Acquisition via Crowdsourcing and Machine Learning基于众包和机器学习的释义获取_第5页
资源描述:

《Paraphrase Acquisition via Crowdsourcing and Machine Learning基于众包和机器学习的释义获取》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、ParaphraseAcquisitionviaCrowdsourcingandMachineLearningSTEVENBURROWSandMARTINPOTTHASTandBENNOSTEINWebTechnologyandInformationSystems,Bauhaus-UniversitätWeimarToparaphrasemeanstorewritecontentwhilstpreservingtheoriginalmeaning.Paraphrasingisimportantinfieldssuchastextreuseinjournali

2、sm,anonymisingwork,andimprovingthequalityofcustomer-writtenre-views.Thispapercontributestoparaphraseacquisitionandfocusesontwoaspectsthatarenotaddressedbycurrentresearch:(1)acquisitionviacrowdsourcing,and(2)acquisitionofpassage-levelsamples.Thechallengeofthefirstaspectisautomaticqua

3、lityassurance;withoutsuchameansthecrowdsourcingparadigmisnotef-fective,andwithoutcrowdsourcingthecreationoftestcorporaisunacceptablyexpensiveforrealisticorderofmagnitudes.Thesecondaspectaddressesthedeficitthatmostofthepreviousworkingeneratingandevaluat-ingparaphraseshasbeenconducted

4、usingsentence-levelparaphrasesorshorter;theseshort-sampleanalysesarelimitedintermsofapplicationtoplagiarismdetection,forexample.WepresenttheWebisCrowdParaphraseCorpus2011(Webis-CPC-11),whichrecentlyformedpartofthePAN2010internationalplagiarismdetectioncompetition.Thiscorpuscomprise

5、spassage-levelparaphraseswith4067positivesamplesand3792negativesamplesthatfailedourcriteria,usingAmazon’sMechanicalTurkforcrowdsourcing.Inthispaper,wereviewthelessonslearnedatPAN2010,andexplainindetailthemethodusedtoconstructthecorpus.Theempiricalcontributionsincludemachinelearning

6、experimentstoexploreifpassage-levelparaphrasescanbeidentifiedinatwo-classclassificationproblemusingparaphrasesimilarityfeatures,andwefindthatak-nearest-neighborclas-sifiercancorrectlydistinguishbetweenparaphrasedandnon-paraphrasedsampleswith0.980precisionat0.523recall.Thisresultimplies

7、thatjustunderhalfofoursamplesmustbediscarded(remaining0.477fraction),butourcost-analysisshowsthattheautomationweintroduceresultsina18%financialsavingandover100hoursoftimereturnedtotheresearcherswhenrepeatingasimilarcorpusdesign.Ontheotherhand,whenbuildinganunrelatedcorpusrequiringsa

8、y25%trainingdatafortheauto

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。