资源描述:
《最短路问题及其应用new》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、最短路问题及其应用顾碧芬06200103摘要:主要介绍最短路的两种算法,迪杰斯特拉(Dijkstra)及弗罗伊德(Floyd)算法。以及这两种算法在实际问题中的应用和比较。1引言最短路问题是图论理论的一个经典问题。寻找最短路径就是在指定网络中两结点间找一条距离最小的路。最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。最短路径算法的选择与实现是通道路线设计的基础,最短路径算法是计算机科学与地理信息科学等领域的研究热点,很多网络相关问题均可纳入最短路径问题的范畴之中。经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短
2、路径算法不断涌现。2最短路2.1最短路的定义对最短路问题的研究早在上个世纪60年代以前就卓有成效了,其中对赋权图的有效算法是由荷兰著名计算机专家E.W.Dijkstra在1959年首次提出的,该算法能够解决两指定点间的最短路,也可以求解图G中一特定点到其它各顶点的最短路。后来海斯在Dijkstra算法的基础之上提出了海斯算法。但这两种算法都不能解决含有负权的图的最短路问题。因此由Ford提出了Ford算法,它能有效地解决含有负权的最短路问题。但在现实生活中,我们所遇到的问题大都不含负权,所以我们在的情况下选择Dijkstra算法。定义①1若图G=G(V,E)中各边e都赋有
3、一个实数W(e),称为边e的权,则称这种图为赋权图,记为G=G(V,E,W)。定义②2若图G=G(V,E)是赋权图且,,若u是到的路的权,则称为的长,长最小的到的路称为最短路。若要找出从到的通路,使全长最短,即。2.2最短路问题算法的基本思想及基本步骤在求解网络图上节点间最短路径的方法中,目前国内外一致公认的较好算法有迪杰斯特拉(Dijkstra)及弗罗伊德(Floyd)算法。这两种算法中,网络被抽象为一个图论中定义的有向或无向图,并利用图的节点邻接矩阵记录点间的关联信息。在进行图的遍历以搜索最短路径时,以该矩阵为基础不断进行目标值的最小性判别,直到获得最后的优化路径。D
4、ijkstra算法是图论中确定最短路的基本方法,也是其它算法的基础。为了求出赋权图中任意两结点之间的最短路径,通常采用两种方法。一种方法是每次以一个结点为源点,重复执行Dijkstra算法n次。另一种方法是由Floyd于1962年提出的Floyd算法,其时间复杂度为,虽然与重复执行Dijkstra算法n次的时间复杂度相同,但其形式上略为简单,且实际运算效果要好于前者。Dijkstra算法基本步骤③:令:并令:1、对,求。2、求得,使=令3、若则已找到到的最短路距离,否则令从中删去转1这样经过有限次迭代则可以求出到的最短路线,可以用一个流程图来表示:第一步先取意即到的距离为
5、0,而是对所赋的初值。第二步利用已知,根据对进行修正。第三步对所有修正后的求出其最小者。其对应的点是所能一步到达的点中最近的一个,由于所有。因此任何从其它点中转而到达的通路上的距离都大于直接到的距离,因此就是到的最短距离,所以在算法中令并从s中删去,若k=n则就是到的最短路线,计算结束。否则令回到第二步,继续运算,直到k=n为止。这样每一次迭代,得到到一点的最短距离,重复上述过程直到。Floyd算法的基本原理和实现方法为:如果一个矩阵其中表示与间的距离,若与间无路可通,则为无穷大。与间的最短距离存在经过与间的和不经过两种情况,所以可以令,n(n为节点数)。检查与的值,在此
6、,与分别为目前所知的到与到的最短距离,因此,就是到经过的最短距离。所以,若有,就表示从出发经再到的距离要比原来的到距离短,自然把到的重写成。每当一个搜索完,就是目前到的最短距离。重复这一过程,最后当查完所有时,就为到的最短距离。3最短路的应用3.1在运输网络中的应用④设6个城市之间的一个公路网(图1)每条公路为图中的边,边上的权数表示该段公路的长度(单位:百公里),设你处在城市,那么从到应选择哪一路径使你的费用最省。解:首先设每百公里所用费用相同,求到的费用最少,既求到的最短路线。为了方便计算,先作出该网络的距离矩阵,如下:(0)设,(1)第一次迭代①计算如下②取,令③由
7、于,令转(1)第二次迭代:①算如下②取令③由于,令转(1)第三次迭代:①算如下②取③由于,令转(1)第四次迭代:①算如下②取③由于,令转(1)第五次迭代:①算如下②由于。因此已找到到的最短距离为12。计算结束。找最短路线:逆向追踪得最短距离为12,即从城市到城市的距离最短,即费用最省。3.2在舰船通道路线设计中的应用⑤利用图论的经典理论和人群流量理论研究舰船人员通道路线的优化设计及最优线路选择。首先介绍图论相关理论,对船舶通道进行路网抽象,建立网络图,然后根据人群流动的相关理论,选取不同拥挤情况下的人员移动速度,从而确定各条路