深度学习:推进人工智能的梦想

深度学习:推进人工智能的梦想

ID:18451384

大小:45.00 KB

页数:6页

时间:2018-09-18

深度学习:推进人工智能的梦想_第1页
深度学习:推进人工智能的梦想_第2页
深度学习:推进人工智能的梦想_第3页
深度学习:推进人工智能的梦想_第4页
深度学习:推进人工智能的梦想_第5页
资源描述:

《深度学习:推进人工智能的梦想》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、深度学习:推进人工智能的梦想--------------------------------------------------------------------------------发布时间:2013年06月10日 浏览量:1115摘要:深度学习带来了机器学习的新浪潮,推动“大数据+深度模型”时代的来临,以及人工智能和人机交互大踏步前进。如果我们能在理论、建模和工程方面突破深度学习面临的一系列难题,人工智能的梦想不再遥远。2012年6月,《纽约时报》披露了GoogleBrain项目,吸引了公众的广泛关注。这个项目是由著名的斯坦福大学机器学习

2、教授AndrewNg和在大规模计算机系统方面的世界顶尖专家JeffDean共同主导,用16000个CPUCore的并行计算平台训练一种称为“深层神经网络”(DNN,DeepNeuralNetworks)的机器学习模型,在语音识别和图像识别等领域获得了巨大的成功。2012年11月,微软在中国天津的一次活动上公开演示了一个全自动的同声传译系统,讲演者用英文演讲,后台的计算机一气呵成自动完成语音识别、英中机器翻译,以及中文语音合成,效果非常流畅。据报道,后面支撑的关键技术也是DNN,或者深度学习(DL,DeepLearning)。2013年1月,在百度

3、的年会上,创始人兼CEO李彦宏高调宣布要成立百度研究院,其中第一个重点方向就是深度学习,并为此而成立InstituteofDeepLearning(IDL)。这是百度成立十多年以来第一次成立研究院。2013年4月,《麻省理工学院技术评论》杂志将深度学习列为2013年十大突破性技术(BreakthroughTechnology)之首。读者一定非常好奇,什么是深度学习?为什么深度学习受到学术界和工业界如此广泛的重视?深度学习技术研发面临什么样的科学和工程问题?深度学习带来的科技进步将怎样改变人们的生活?机器学习的两次浪潮:从浅层学习到深度学习在解释深

4、度学习之前,我们需要了解什么是机器学习。机器学习是人工智能的一个分支,而在很多时候,几乎成为人工智能的代名词。简单来说,机器学习就是通过算法,使得机器能从大量历史数据中学习规律,从而对新的样本做智能识别或对未来做预测。从1980年代末期以来,机器学习的发展大致经历了两次浪潮:浅层学习(ShallowLearning)和深度学习(DeepLearning)。需要指出是,机器学习历史阶段的划分是一个仁者见仁,智者见智的事情,从不同的维度来看会得到不同的结论。这里我们是从机器学习模型的层次结构来看的。第一次浪潮:浅层学习1980年代末期,用于人工神经网

5、络的反向传播算法(也叫BackPropagation算法或者BP算法)的发明,给机器学习带来了希望,掀起了基于统计模型的机器学习热潮。这个热潮一直持续到今天。人们发现,利用BP算法可以让一个人工神经网络模型从大量训练样本中学习出统计规律,从而对未知事件做预测。这种基于统计的机器学习方法比起过去基于人工规则的系统,在很多方面显示出优越性。这个时候的人工神经网络,虽然也被称作多层感知机(Multi-layerPerceptron),但实际上是一种只含有一层隐层节点的浅层模型。90年代,各种各样的浅层机器学习模型相继被提出,比如支撑向量机(SVM,Su

6、pportVectorMachines)、Boosting、最大熵方法(例如LR,LogisticRegression)等。这些模型的结构基本上可以看成带有一层隐层节点(如SVM、Boosting),或没有隐层节点(如LR)。这些模型在无论是理论分析还是应用都获得了巨大的成功。相比较之下,由于理论分析的难度,加上训练方法需要很多经验和技巧,所以这个时期浅层人工神经网络反而相对较为沉寂。2000年以来互联网的高速发展,对大数据的智能化分析和预测提出了巨大需求,浅层学习模型在互联网应用上获得了巨大成功。最成功的应用包括搜索广告系统(比如Google的

7、AdWords、百度的凤巢系统)的广告点击率CTR预估、网页搜索排序(例如Yahoo!和微软的搜索引擎)、垃圾邮件过滤系统、基于内容的推荐系统等。第二次浪潮:深度学习2006年,加拿大多伦多大学教授、机器学习领域泰斗——GeoffreyHinton和他的学生RuslanSalakhutdinov在顶尖学术刊物《科学》上发表了一篇文章,开启了深度学习在学术界和工业界的浪潮。这篇文章有两个主要的信息:1.很多隐层的人工神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类;2.深度神经网络在训练上的难度,可以通过“

8、逐层初始化”(Layer-wisePre-training)来有效克服,在这篇文章中,逐层初始化是通过无监督学习实现的。自2006年以来

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。