测量作者研究关联性:基于单词、基于主题和作者共被引方法的比较(英文)

测量作者研究关联性:基于单词、基于主题和作者共被引方法的比较(英文)

ID:18371176

大小:1.34 MB

页数:14页

时间:2018-09-17

测量作者研究关联性:基于单词、基于主题和作者共被引方法的比较(英文)_第1页
测量作者研究关联性:基于单词、基于主题和作者共被引方法的比较(英文)_第2页
测量作者研究关联性:基于单词、基于主题和作者共被引方法的比较(英文)_第3页
测量作者研究关联性:基于单词、基于主题和作者共被引方法的比较(英文)_第4页
测量作者研究关联性:基于单词、基于主题和作者共被引方法的比较(英文)_第5页
资源描述:

《测量作者研究关联性:基于单词、基于主题和作者共被引方法的比较(英文)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、MeasuringAuthorResearchRelatedness:AComparisonofWord-Based,Topic-Based,andAuthorCocitationApproachesKunLuandDietmarWolframSchoolofInformationStudies,UniversityofWisconsin-Milwaukee,P.O.Box413,Milwaukee,WI53201.E-mail:{kunlu,dwolfram}@uwm.eduRelationshipsbet

2、weenauthorsbasedoncharacteristicsrelationshipstudiedisbasedonthedataused:directcitation,ofpublishedliteraturehavebeenstudiedfordecades.cocitationanalysis,co-authorshipanalysis,bibliographicAuthorcocitationanalysisusingmappingtechniquescouplinganalysis,andco

3、-wordanalysis(discussedbelow).hasbeenmostfrequentlyusedtostudyhowcloselytwoauthorsarethoughttobeinintellectualspacebasedonAllhavebeensuccessfullyappliedtovisualizescientifichowmembersoftheresearchcommunityco-citetheirstructureandtodescribeauthorrelatedness.R

4、ecently,moreworks.Otherapproachesexisttostudyauthorrelated-sophisticatedhybridmethods(i.e.,usingtextualcontentandnessbasedmoredirectlyonthetextoftheirpublishedcitations)havebeenappliedtothemappingofarticlesworks.Inthisstudywepresentstaticanddynamicword-(Ahl

5、gren&Colliander,2009;Boyack&Klavans,2010;Caobasedapproachesusingvectorspacemodeling,aswellasatopic-basedapproachbasedonlatentDirichletallo-&Gao,2005)andjournals(Liuetal.,2010).Tothebestofourcationformappingauthorresearchrelatedness.Vectorknowledgetheuseofte

6、xtualcontentand,morespecifically,aspacemodelingisusedtodefineanauthorspacecon-topicmodel(e.g.,Deerwester,Dumais,Furnas,Landauer,&sistingofworksbyagivenauthor.OutcomesforHarshman,1990)todeterminetherelatednessofauthorsthetwoword-basedapproachesandatopic-basedh

7、avenotbeenstudiedyet.approachfor50prolificauthorsinlibraryandinforma-tionsciencearecomparedwithmoretraditionalauthorInthisstudyweproposenewtextualfeature-basedcocitationanalysisusingmultidimensionalscalingapproachesbasedonco-occurringwordsthatapplyvectorandh

8、ierarchicalclusteranalysis.Thetwoword-basedspacemodelingtomeasuretherelatednessofauthors’approachesproducedsimilaroutcomesexceptwhereresearch.Atopic-basedapproachusinglatentDirichlettwoauthorswerefrequ

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。