spss多元线性回归分析教程76094

spss多元线性回归分析教程76094

ID:18311521

大小:4.88 MB

页数:9页

时间:2018-09-16

spss多元线性回归分析教程76094_第1页
spss多元线性回归分析教程76094_第2页
spss多元线性回归分析教程76094_第3页
spss多元线性回归分析教程76094_第4页
spss多元线性回归分析教程76094_第5页
资源描述:

《spss多元线性回归分析教程76094》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、线性回归分析的SPSS操作本节内容主要介绍如何确定并建立线性回归方程。包括只有一个自变量的一元线性回归和和含有多个自变量的多元线性回归。为了确保所建立的回归方程符合线性标准,在进行回归分析之前,我们往往需要对因变量与自变量进行线性检验。也就是类似于相关分析一章中讲过的借助于散点图对变量间的关系进行粗略的线性检验,这里不再重复。另外,通过散点图还可以发现数据中的奇异值,对散点图中表示的可能的奇异值需要认真检查这一数据的合理性。一、一元线性回归分析1.数据以本章第三节例3的数据为例,简单介绍利用SPSS

2、如何进行一元线性回归分析。数据编辑窗口显示数据输入格式如下图7-8(文件7-6-1.sav):图7-8:回归分析数据输入2.用SPSS进行回归分析,实例操作如下:2.1.回归方程的建立与检验(1)操作①单击主菜单Analyze/Regression/Linear…,进入设置对话框如图7-9所示。从左边变量表列中把因变量y选入到因变量(Dependent)框中,把自变量x选入到自变量(Independent)框中。在方法即Method一项上请注意保持系统默认的选项Enter,选择该项表示要求系统在建立

3、回归方程时把所选中的全部自变量都保留在方程中。所以该方法可命名为强制进入法(在多元回归分析中再具体介绍这一选项的应用)。具体如下图所示:8图7-9线性回归分析主对话框②请单击Statistics…按钮,可以选择需要输出的一些统计量。如RegressionCoefficients(回归系数)中的Estimates,可以输出回归系数及相关统计量,包括回归系数B、标准误、标准化回归系数BETA、T值及显著性水平等。Modelfit项可输出相关系数R,测定系数R2,调整系数、估计标准误及方差分析表。上述两项

4、为默认选项,请注意保持选中。设置如图7-10所示。设置完成后点击Continue返回主对话框。图7-10:线性回归分析的Statistics选项图7-11:线性回归分析的Options选项回归方程建立后,除了需要对方程的显著性进行检验外,还需要检验所建立的方程是否违反回归分析的假定,为此需进行多项残差分析。由于此部分内容较复杂而且理论性较强,所以不在此详细介绍,读者如有兴趣,可参阅有关资料。③用户在进行回归分析时,还可以选择是否输出方程常数。单击Options…按钮,打开它的对话框,可以看到中间有一

5、项Includeconstantinequation可选项。选中该项可输出对常数的检验。在Options对话框中,还可以定义处理缺失值的方法和设置多元逐步回归中变量进入和排除方程的准则,这里我们采用系统的默认设置,如图7-11所示。设置完成后点击Continue返回主对话框。④在主对话框点击OK得到程序运行结果。8(2)结果及解释上面定义的程序运行结果如下所示:①方程中包含的自变量列表同时显示进入方法。如本例中方程中的自变量为x,方法为Enter。VariablesEntered/RemovedMo

6、delVariablesEnteredVariablesRemovedMethod1X.EnteraAllrequestedvariablesentered.bDependentVariable:Y②模型拟合概述列出了模型的R、R2、调整R2及估计标准误。R2值越大所反映的两变量的共变量比率越高,模型与数据的拟合程度越好。ModelSummaryModelRRSquareAdjustedRSquareStd.ErroroftheEstimate1.859.738.7236.2814aPredicto

7、rs:(Constant),X本例所用数据拟合结果显示:所考察的自变量和因变量之间的相关系数为0.859,拟合线性回归的确定性系数为0.738,经调整后的确定性系数为0.723,标准误的估计为6.2814。③方差分析表列出了变异源、自由度、均方、F值及对F的显著性检验。ANOVAModelSumofSquaresdfMeanSquareFSig.1Regression1995.79111995.79150.583.000Residual710.2091839.456Total2706.00019aP

8、redictors:(Constant),XbDependentVariable:Y本例中回归方程显著性检验结果表明:回归平方和为1995.791,残差平方和为710.209,总平方和为2706.000,对应的F统计量的值为50.583,显著性水平小于0.05,可以认为所建立的回归方程有效。④回归系数表列出了常数及非标准化回归系数的值及标准化的回归系数,同时对其进行显著性检验。8CoefficientsUnstandardizedCoefficientsStandar

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。