高中教材变式题5:不等式

高中教材变式题5:不等式

ID:18298931

大小:511.50 KB

页数:7页

时间:2018-09-16

高中教材变式题5:不等式_第1页
高中教材变式题5:不等式_第2页
高中教材变式题5:不等式_第3页
高中教材变式题5:不等式_第4页
高中教材变式题5:不等式_第5页
资源描述:

《高中教材变式题5:不等式》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、免财富值!!欢迎分享!!不等式1(人教A版82页例1)已知,求证:.变式1:(1)如果,那么,下列不等式中正确的是()A.B.C.D.解:选A设计意图:不等式基本性质的熟练应用变式2:设a,b,c,d∈R,且a>b,c>d,则下列结论中正确的是()A.a+c>b+dB.a-c>b-dC.ac>bdD.解:选A设计意图:不等式基本性质的熟练应用2(人教A版89页习题3.2A组第3题)若关于的一元二次方程有两个不相等的实数根,求的取值范围.变式1:解关于x的不等式解:下面对参数m进行分类讨论:①当m=时,原不等式为–(x+1)>0,∴不等式的解为②当时,原不等式可化为

2、,∴不等式的解为或③当时,原不等式可化为,百度文库:让每个人平等的提升自我!免费文档!欢迎下载!免财富值!!欢迎分享!!当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式无解综上述,原不等式的解集情况为:①当时,解为;②当时,无解;③当时,解为;④当m=时,解为;⑤当时,解为或设计意图:含参数的不等式的解法.变式2:设不等式x2-2ax+a+2≤0的解集为M,如果M[1,4],求实数a的取值范围?解:(1)M[1,4]有两种情况:其一是M=,此时Δ<0;其二是M≠,此时Δ=0或Δ>0,分三种情况计算a的取值范围。设f(x)=x2-2ax+a+2,有Δ=

3、(-2a)2-4(a+2)=4(a2-a-2)当Δ<0时,-1<a<2,M=[1,4];当Δ=0时,a=-1或2;当a=-1时M={-1}[1,4];当a=2时,m={2}[1,4]。当Δ>0时,a<-1或a>2。设方程f(x)=0的两根x1,x2,且x1<x2,那么M=[x1,x2],M[1,4]1≤x1<x2≤4,即,解得2<a<,∴M[1,4]时,a的取值范围是(-1,).设计意图:一元二次不等式、一元二次方程及二次函数的综合应用.百度文库:让每个人平等的提升自我!免费文档!欢迎下载!免财富值!!欢迎分享!!3(人教A版103页练习1(1))求的最大值,使满

4、足约束条件.变式1:设动点坐标(x,y)满足(x-y+1)(x+y-4)≥0,x≥3,则x2+y2的最小值为()ABCD10解:数形结合可知当x=3,y=1时,x2+y2的最小值为10选D设计意图:用线性规划的知识解决简单的非线性规划问题.4.(人教A版105习题3.3A组第2题)画出不等式组表示的平面区域.变式1:点(-2,t)在直线2x-3y+6=0的上方,则t的取值范围是______解:(-2,t)在2x-3y+6=0的上方,则2×(-2)-3t+6<0,解得t>答案:t>设计意图:熟悉判断不等式所代表的区域的方法.变式2:求不等式|x-1|+|y-1|≤2

5、表示的平面区域的面积解:|x-1|+|y-1|≤2可化为或或或其平面区域如图∴面积S=×4×4=8设计意图:不同形式的可行域的作图.5.(人教A版113页习题3.4A组第1题)(1)把36写成两个正数的积,当这两个正数取什么值时,它们的和最小?百度文库:让每个人平等的提升自我!免费文档!欢迎下载!免财富值!!欢迎分享!!(2)把18写成两个正数的和,当这两个正数取什么值时,它们的积最大?变式1:函数y=+的值域为解:y=+=(+1)+-1≥2-1=1,所以值域为[1,+∞)设计意图:均值不等式的灵活应用.变式2:设x≥0,y≥0,x2+=1,则的最大值为__解法一

6、:∵x≥0,y≥0,x2+=1∴==≤==当且仅当x=,y=(即x2=)时,取得最大值解法二:令(0≤≤)则=cos=≤=当=,即=时,x=,y=时,取得最大值设计意图:均值不等式的灵活应用.6.(人教A版115复习参考题A组第2题)百度文库:让每个人平等的提升自我!免费文档!欢迎下载!免财富值!!欢迎分享!!已知集合,,求.变式1:已知A={x

7、x3+3x2+2x>0},B={x

8、x2+ax+b≤0}且A∩B={x

9、0<x≤2},A∪B={x|x>-2},求a、b的值解:A={x

10、-2<x<-1或x>0},设B=[x1,x2],由A∩B=(0,2]知x2=2,且

11、-1≤x1≤0,①由A∪B=(-2,+∞)知-2≤x1≤-1②由①②知x1=-1,x2=2,∴a=-(x1+x2)=-1,b=x1x2=-2设计意图:一元二次不等式与集合的运算综合。变式2:解关于x的不等式解:下面对参数m进行分类讨论:①当m=时,原不等式为x+1>0,∴不等式的解为②当时,原不等式可化为,∴不等式的解为或③当时,原不等式可化为,当时,原不等式的解集为;当时,原不等式的解集为;当时,原不等式无解综上述,原不等式的解集情况为:①当时,解为;②当时,无解;百度文库:让每个人平等的提升自我!免费文档!欢迎下载!免财富值!!欢迎分享!!③当时,解为;④当m

12、=时,解为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。