新人教a版必修1高中数学3.2.2 函数模型的应用实例导学案

新人教a版必修1高中数学3.2.2 函数模型的应用实例导学案

ID:18156659

大小:614.50 KB

页数:9页

时间:2018-09-14

新人教a版必修1高中数学3.2.2 函数模型的应用实例导学案_第1页
新人教a版必修1高中数学3.2.2 函数模型的应用实例导学案_第2页
新人教a版必修1高中数学3.2.2 函数模型的应用实例导学案_第3页
新人教a版必修1高中数学3.2.2 函数模型的应用实例导学案_第4页
新人教a版必修1高中数学3.2.2 函数模型的应用实例导学案_第5页
资源描述:

《新人教a版必修1高中数学3.2.2 函数模型的应用实例导学案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3.2.2函数模型的应用实例班级:__________姓名:__________设计人__________日期__________课前预习·预习案【温馨寄语】有人说:“人人都可以成为自己的幸运的建筑师。”愿你们在前行的道路上,用自己的双手建造幸运的大厦【学习目标】1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义2.恰当运用函数的三类表示法(解析式、图象、表格)并借助信息技术解决一些实际问题.【学习重点】1.将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合

2、实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义2.集合的表示方法,即运用集合的列举法与描述法,正确表示一些简单的集合【学习难点】1.运用数学模型分析解决实际问题2.对数函数应用题的基本类型和求解策略知识拓展·探究案【交流展示】1.某市原来民用电价为0.52元/kW·h,换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/kW·h,谷时段(晚上九点到次日早上八点)的电价为0.35元/kW·h,对于一个平均每月用电量为200kW·h的家庭,要使节省的电费不少于原来电费的10%,则这个家庭每月在

3、峰时段的平均用电量A.至少为82kW·hB.至少为118kW·hC.至多为198kW·hD.至多为118kW·h2.一等腰三角形的周长是20,底边长是关于腰长的函数,它的解析式为A.B.C.D.3.某产品按质量分为10个档次,生产第一档(即最低档次)的利润是每件8元.每提高一个档次,利润每件增加2元,但每提高一个档次,在相同的时间内,产量减少3件,如果在规定的时间内,最低档次的产品可生产60件,则在同样的时间内,生产哪一档次的产品的总利润最大?A.10B.9C.8D.74.某车间生产某种产品,固定成本为2万元,每生

4、产一件产品,成本增加100元,已知总收益(总收益指工厂出售产品的全部收入,它是成本与总利润的和,单位:元)是年产量(单位:件)的函数,满足关系式:求每年生产多少产品时,总利润最大?此时总利润是多少元?5.某单位职工工资经过六年翻了三番,则每年比上一年平均增长的百分率是(下列数据仅供参考:)A.38%B.41%C.44%D.73%6.某人2013年1月1日到银行存入一年期存款元,若年利率为,按复利计算,到2016年1月1日,可取回款           元.A.B.C.D.7.如图,开始时桶1中有升水,分钟后剩余的水

5、符合指数衰减曲线,那么桶2中水就是,假设过5分钟后桶1和桶2的水相等,则再过    分钟桶1中的水只有升.8.某海滨城市现有人口100万人,如果年平均自然增长率为1.2%.解答下面的问题:(1)写出该城市人口数(万人)与年份(年)的函数关系.(2)计算10年后该城市人口总数(精确到0.1万人).(3)计算大约多少年后该城市人口将达到120人(精确到1年).9.某地为了抑制一种有害昆虫的繁殖,引入了一种以该昆虫为食物的特殊动物,已知该动物的繁殖数量(只)与引入时间(年)的关系为,若该动物在引入一年后的数量为100只,

6、则第7年它们发展到A.300只B.400只C.600只D.700只10.燕子每年秋天都要从北方飞向南方过冬,研究燕子的专家发现,两岁燕子的飞行速度可以表示为函数,单位是m/s,其中表示燕子的耗氧量.(1)当燕子静止时的耗氧量是多少个单位?(2)当一只两岁燕子的耗氧量是80个单位时,它的飞行速度是多少?11.今有一组数据,如表所示:12345356.999.0111下列函数模型中,最接近地表示这组数据满足的规律的一个是A.指数函数B.反比例函数C.一次函数D.二次函数12.某种计算机病毒是通过电子邮件进行传播的,下表

7、是某公司前5天监测到的数据:第天12345被感染的计算机数量(台)10203981160则下列函数模型中能较好地反映计算机在第天被感染的数量与之间的关系的是A.B.C.D.【学习小结】1.幂函数模型解析式的两种类型及求解方法(1)已知函数解析式形式:用待定系数法求解.(2)解析式形式未知:审清题意,弄清常量,变量等各元素之间的关系,列出两个变量,之间的解析式,进而解决问题.2.二次函数模型应用题的解法(1)理解题意,设定变量,.(2)建立二次函数关系,并注明定义域.(3)运用二次函数相差知识求解.(4)回归到应用问

8、题中去,给出答案.3.一次函数模型的特点和求解方法(1)一次函数模型的突出特点是其图象是一条直线.(2)解一次函数模型时,注意待定系数法的应用,主要步骤是:设元、列式、求解.4.对一次函数解析式的三点说明解析式:.(1)一次项的系数.(2)时,是的正比例函数,即为非零常数).(3)时,直线必经过一、二象限;时,直线必经过原点;时,直线必经过三、四象限.5.数

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。