资源描述:
《高一数学三角函数的图象和性质经典例题》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、解:在单位圆中,作出锐角α在正弦线MP,如图2-9所示在△MPO中,MP+OM>OP=1即MP+OM>1∴sinα+cosα>1于P1,P2两点,过P1,P2分别作P1M1⊥x轴,P2M2⊥x轴,垂足分k∈Z}【说明】 学会利用单位圆求解三角函数的一些问题,借助单位圆求解不等式的一般方法是:①用边界值定出角的终边位置;②根据不等式定出角的范围;③在[0,2π]中找出角的代表;④求交集,找单位圆中重叠的部分;⑤写出角的范围的表达式,注意加周期.【例3】 求下列函数的定义域:解:(1)为使函数有意义,需满足2sin2x+c
2、osx-1≥0由单位圆,如图2-12所示k∈Z}【说明】 求函数的定义域通常是解不等式组,利用“数形结合”,借助于数轴画线求交集的方法进行.在求解三角函数,特别是综合性较强的三角函数的定义域,我们同样可以利用“数形结合”,在单位圆中画三角函数线,求表示各三角不等式解集的扇形区域的交集来完成.otherstaffoftheCentre.Duringthewar,ZhuwastransferredbacktoJiangxi,andDirectorofthenewOfficeinJingdezhen,JiangxiCommi
3、tteeSecretary.Startingin1939servedasrecorderoftheWestNorthOrganization,SecretaryoftheSpecialCommitteeAfterthevictoryofthelongMarch,hehasbeentheNorthwestOfficeoftheFederationofStateenterprisesMinister,ShenmufuguSARmissions,DirectorofNingxiaCountypartyCommitteeSec
4、retaryandrecorderoftheCountypartyCommitteeSecretary,Ministersand9(4)为使函数有意义,需满足:取k=0和-1时,得交集为-4<x≤-π或0≤x≤π∴函数的定义域为(-4,-π]∪[0,π]【说明】 求三角函数的定义域要注意三角函数本身的特征和性质,如在转化为不等式或不等式组后要注意三角函数的符号及单调性,在进行三角函数的变形时,要注意三角函数的每一步变形都保持恒等,即不能改变原函数的自变量的取值范围.【例4】 求下列函数的值域:∴此函数的值域为{y
5、0≤
6、y<1}∵1+sinx+cosx≠0 ∴t≠-1【说明】 求三角函数的值域,除正确运用必要的变换外,还要注意函数的概念的指导作用,注意利用正、余弦函数的有界性.【例5】 判断下列函数的奇偶性:【分析】 先确定函数的定义域,然后根据奇函数成偶函数的定义判断函数的奇偶性.∵f(1-x)=-sin(-2x)=sin2x=-f(x)(2)函数的定义域为R,且f(-x)=sin[cos(-x))=sin(cosx)=f(x)otherstaffoftheCentre.Duringthewar,Zhuwastransferredb
7、acktoJiangxi,andDirectorofthenewOfficeinJingdezhen,JiangxiCommitteeSecretary.Startingin1939servedasrecorderoftheWestNorthOrganization,SecretaryoftheSpecialCommitteeAfterthevictoryofthelongMarch,hehasbeentheNorthwestOfficeoftheFederationofStateenterprisesMinister
8、,ShenmufuguSARmissions,DirectorofNingxiaCountypartyCommitteeSecretaryandrecorderoftheCountypartyCommitteeSecretary,Ministersand9∴函数f(x)=sin(cosx)是偶函数.(3)因1+sinx≠0,∴sinx≠-1,函数的定义域为{x
9、x∈R且x≠2k既不是奇函数,也不是偶函数.【例6】 求下列函数的最小正周期:【分析】 欲求三角函数的周期,一般是把三角函数f(x)化成易求周期的函数y=Asi
10、n(ωx+j)+b或y=Acos(ωx+j)+b的等形式.函数y=Asin(ω“多个化一个,高次化一次”,将所给函数化成单角单函数.(2)y=cos4x+sin4x=(cos2x+sin2x)2-2sin2xcos2x=
11、cosx
12、+
13、sinx
14、=f(x)正周期.(x+T)
15、+
16、cos(x+T)
17、=
18、sinx
19、+
20、cosx
21、都成立