教育类学科教育毕业论文 谈谈“暴露式”的数学教学过程

教育类学科教育毕业论文 谈谈“暴露式”的数学教学过程

ID:1783273

大小:30.00 KB

页数:7页

时间:2017-11-13

教育类学科教育毕业论文 谈谈“暴露式”的数学教学过程_第1页
教育类学科教育毕业论文 谈谈“暴露式”的数学教学过程_第2页
教育类学科教育毕业论文 谈谈“暴露式”的数学教学过程_第3页
教育类学科教育毕业论文 谈谈“暴露式”的数学教学过程_第4页
教育类学科教育毕业论文 谈谈“暴露式”的数学教学过程_第5页
资源描述:

《教育类学科教育毕业论文 谈谈“暴露式”的数学教学过程》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、湖南师范大学本科毕业论文考籍号:XXXXXXXXX姓名:XXX专业:教育类学科教育论文题目:谈谈“暴露式”的数学教学过程指导老师:XXX二〇一一年十二月十日长期以来,数学教学一直停留在知识型的教学模式上。教学中,过于强调对数学概念、法则、性质、公式的灌输与记忆,忽视了对这些知识的产生、发展、形成和应用过程的揭示和探究,不善于将这一过程中丰富的思维训练因素挖掘出来,也不善于将知识中蕴藏的丰富的思想方法加以暴露,学生学到的是无本之木,无源之水的知识。随着教学改革的不断深入,已有不少教师认识到数学教学的本质应是“数

2、学思维活动过程”的教学。在这一“活动过程”的教学中,应暴露数学概念的形成过程、规律的探索过程、结论的推导过程及方法的思考过程等。要让学生在原有知识和经验的基础上,在主动参与中,通过操作和实践,由外部活动逐渐内化,完成知识的发展过程和“获取”过程,使学生既长知识,又长智慧。下面谈谈我的做法和体会。一、概念形成过程的教学数学概念是人们对数学现象和过程的认识在一定阶段上的总结,是以精辟的思维形式表现大量知识的一种手段。在概念教学中,我首先暴露概念提出的背景,暴露其抽象、概括的过程,将浓缩了的知识充分稀释,便于学生吸

3、收。例如,“体积”概念的教学,就应紧扣概念的产生、发展、形成和应用的有序思维过程来精心设计。1.首先让学生观察一块橡皮擦和一块黑板擦,问学生哪个大,哪个小?又出示两个棱长分别是5厘米和3厘米的方木块,问学生哪个大,哪个小?通过比较,学生初步获得物体有大小之分的感性认识。2.拿出两个相同的烧杯,盛有同样多的水,分别向烧杯里放入石子和石块,结果水位明显上升。然后引导学生讨论烧杯里的水位为什么会上升?学生又从这一具体事例中获得了物体占有空间的表象。3.引导学生分析、比较,为什么烧杯里的水位会随着石块的增大而升高。在

4、这一思维过程中,学生就能比较自然地导出:“物体所占空间的大小叫作体积”这一概念。4.接着我又让学生举出其它有关体积的例子,或用体积概念解释有关现象,使体积概念在应用中得到巩固。如先在烧杯里盛满水,然后放入石块,问学生从杯里溢出的水的多少与石块有什么关系?经过观察、分析,学生便能准确地回答:从杯里溢出的水的体积与石块的体积相等。接着再把石块从水中取出,杯里的水位下降,学生立即说出,水位下降的部分,就是石块所占空间的体积。这样,既提高了学生的学习兴趣,又加深了对新学概念的理解。因而,“体积”概念的建立过程,是通过

5、观察、比较、分析、抽象概括的过程,体现了学生在教师的引导下,环环相扣、步步递进、主动参与了这个“从感知经表象达到认识”的思维过程,学生在知识的形成过程中认识并掌握了数学概念,学到知识的同时又学到了获取知识的方法。二、规律探索过程的教学课堂教学是师生的双边活动,教师的“教”是为了诱导学生的“学”。在教学过程中,我常根据教材的内在联系,利用学生已有的基础知识,引导学生主动参与探索新知识,发现新规律。这对学生加深理解旧知识,掌握新知识、培养学习能力是十分有效的。例如,教学“能化成有限小数的分数的特征”时,课始,我就

6、很神秘地请学生考老师,让学生随意说出一些分数,如1/2、5/6、7/25、7/15……我很快判断出能否化成有限小数,并让两个学生用计算器当场验证,结果全对。正当学生又高兴又惊奇时,我说:“这不是老师的本领特别大,而是老师掌握了其中的规律,你们想不想知道其中的奥秘呢?”学生异口同声地说:“想”。从而创设了展开教学的最佳情境。我紧接着问:“这个规律是存在于分数的分子中呢?还是存在于分数的分母中?”当学生观察到7/25与7/15,分子相同,但7/25能化成有限小数,而7/15却不能时,学生首先发现规律存在于分母中。

7、我追问:“能化成有限小数的分数的分母有什么特征呢?”学生兴趣盎然地议论开了:有的同学说分母是合数的分数,但7/15不能化成有限小数,而1/2却又能化成有限小数;有的同学又说分母应是偶数的分数,但5/6不能化成有限小数,7/25却可以化成有限小数……这时,我不再让学生争论了,而是启发学生试着把分数的分母分解质因数,从而发现了能化成有限小数的分数特征。正当学生颇有大功告成之态时,我又不失时机地指出8/24与6/24,为什么分母同是24,化成小数却有两种不同的结果?学生的认识又激起了新的冲突,从而再次引导学生通过实

8、践、思考,自己发现了必须是“一个最简分数”这一重要前提条件。学生在知识内在魅力的激发下,克服了一个又一个的认知冲突,主动地投入到知识的发生、发展、形成的过程中,尝到了自己探索数学规律的乐趣。三、结论推导过程的教学数学是一门逻辑性很强的学科,它的逻辑性强,首先反映在系统严密、前后连贯上,每个知识都不是孤立的,它既是旧知识的发展,又是新知识的基础。遵循小学生的认识规律,引导学生运用已有知识去推导新的结论

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。