欢迎来到天天文库
浏览记录
ID:17694223
大小:1.07 MB
页数:7页
时间:2018-09-04
《大学物理授课教案_第二章_牛顿运动定律》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二章牛顿运动定律沈阳工业大学郭连权(教授)第二章牛顿运动定律§2-1牛顿运动定律力一、牛顿运动定律1、第一定律时,(2-1)说明:⑴反映物体的惯性,故叫做惯性定律。⑵给出了力的概念,指出了力是改变物体运动状态的原因。2、第二定律(2-2)说明:⑴为合力⑵为瞬时关系⑶矢量关系⑷只适应于质点⑸解题时常写成(直角坐标系)(2-3)(自然坐标系)(2-4)3、第三定律(2-5)说明:⑴、在同一直线上,但作用在不同物体上。⑵、同有同无互不抵消。二、几种常见的力1、力第二章牛顿运动定律沈阳工业大学郭连权(教授)力是指物体间的相互作用。2
2、、力学中常见的力(1)万有引力(2-6)即任何二质点都要相互吸引,引力的大小和两个质点的质量、的乘积成正比,和它们距离的平方成反比;引力的方向在它们连线方向上。说明:通常所说的重力就是地面附近物体受地球的引力。(2)弹性力弹簧被拉伸或压缩时,其内部就产生反抗力,并企图恢复原来的形状,这种力称为弹簧的恢复力。(3)摩擦力当一物体在另一物体表面上滑动或有滑动的趋势时,在接触面上有一种阻碍它们相对滑动的力,这种力称为摩擦力。3、两种质量由可证明:,适选单位可有。∴以后不区别二者,统称为质量。§2-2力学单位制和量纲(自学)§2-3惯
3、性系力学相对性原理一、惯性参照系在运动学中,参照系可任选,在应用牛顿定律时,参照系不能任选,因为牛顿运动定律不是对所有的参照系都适用。如图2-1,假设火车车厢的桌面是水平光滑的,在桌面上放一小球,显然小球受合外力=0,当火车以加速度向前开时,车上人看见小球以加速度向后运动。而对地面上人来说,小球的加速度为零。如果取地参系,小球的合外力等于零,故此时牛顿运动定律(第一、二定律)成立。如果取车厢为参照系,小球的加速度,而作用小球的合外力第二章牛顿运动定律沈阳工业大学郭连权(教授),故此时牛顿运动定律(第一、第二定律)不成立。凡是牛
4、顿运动定律成立的参照系,称为惯性系。牛顿定律不成立的参照系称为非惯性系。说明:(1)一个参照系是否为惯性系,要由观察和实验来判断。天文学方面的观察证明,以太阳中心为原点,坐标轴的方向指向恒星的坐标轴是惯性系。理论证明,凡是对惯性系做匀速直线运动的参照系都是惯性系。(2)地球是否为惯性系?因为它有自转和公转,所以地球对太阳这个惯性系不是作匀速直线运动的,严格讲地球不是惯性系。但是,地球自转和公转的角速度都很小,故可以近似看成是惯性系。二、力学相对性原理在1-3中已讲过,参照系E与M,设E是一惯性系,M相对E以做匀速直线运动,即O
5、M也是一惯性系,二参照系相应坐标轴平行,在E、M上牛顿第二定律均成立,设一质点P1质量为m,相对E、M有(2-7)设P相对E、M的速度分别为、,有(2-8)上式两边对求一阶导数有(2-9)可见,P对E和M的加速度相同。综上可知,对于不同的惯性系,牛顿第二定律有相同的形式(见(2-7)),在一惯性系内部所做的任何力学实验,都不能确定该惯性系相对其它惯性系是否在运动(见(2-9)),这个原理称为力学相对性原理或伽利略相对性原理。§2-4牛顿定律应用举例例2-1:如图2-2,水平地面上有一质量为M的物体,静止于地面上。物体与地面间的
6、静摩擦系数为,若要拉动物体,问最小的拉力是多少?沿何方向?解:⑴研究对象:M⑵受力分析:M受四个力,重力,拉力,地面的正压力,地面对它的摩擦力,见受力图2-3。⑶牛顿第二定律:合力:第二章牛顿运动定律沈阳工业大学郭连权(教授)分量式:取直角坐标系x分量:①y分量:②物体启动时,有③物体刚启动时,摩擦力为最大静摩擦力,即,由②解出N,求得为:④④代③中:有⑤可见:。时,要求分母最大。设∵∴时,。代入⑤中,得:方向与水平方向夹角为时,即为所求结果。强调:注意受力分析,力学方程的矢量式、标量式(取坐标)。例2-2:质量为的物体被竖直
7、上抛,初速度为,物体受到的空气阻力数值为,为常数。求物体升高到最高点时所用时间及上升的最大高度。解:⑴研究对象:m⑵受力分析:m受两个力,重力及空气阻力,如图2-4。⑶牛顿第二定律:合力:y分量:第二章牛顿运动定律沈阳工业大学郭连权(教授)即①时,物体达到了最高点,可有为②∵∴③时,,例2-3:如图2-5,长为的轻绳,一端系质量为的小球,另一端系于原点o,开始时小球处于最低位置,若小球获得如图所示的初速度,小球将在竖直面内作圆周运动,求:小球在任意位置的速率及绳的张力。解:⑴研究对象:m第二章牛顿运动定律沈阳工业大学郭连权(教
8、授)⑵受力分析:小球受两个力,即重力,拉力,如图2-6。⑶牛顿定律:应用自然坐标系,运动到处时,分量方程有,方向:①方向:②由②有:即作如下积分:有得:代①中,得:例2-4:如图2-6,一根轻绳穿过定滑轮,轻绳两端各系一质量为和的物体,且,设滑轮的质量不计,滑轮与绳及轴间摩擦
此文档下载收益归作者所有