欢迎来到天天文库
浏览记录
ID:17677216
大小:1.03 MB
页数:13页
时间:2018-09-04
《2012年全国高考——数学理(四川卷,解析版)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、2012年普通高等学校招生全国统一考试(四川卷)数学(理工类)参考公式:如果事件互斥,那么球的表面积公式如果事件相互独立,那么其中表示球的半径球的体积公式如果事件在一次试验中发生的概率是,那么在次独立重复试验中事件恰好发生次的概率其中表示球的半径第一部分(选择题共60分)注意事项:1、选择题必须使用2B铅笔将答案标号涂在机读卡上对应题目标号的位置上。2、本部分共12小题,每小题5分,共60分。一、选择题:每小题给出的四个选项中,只有一项是符合题目要求的。1、的展开式中的系数是()A、B、C、D、[答案]D[解析]二项式展开式的通项公式为=,令k=2,则[点评]:高考二项展开式问
2、题题型难度不大,要得到这部分分值,首先需要熟练掌握二项展开式的通项公式,其次需要强化考生的计算能力.2、复数()A、B、C、D、[答案]B.[解析][点评]突出考查知识点,不需采用分母实数化等常规方法,分子直接展开就可以.3、函数在处的极限是()A、不存在B、等于C、等于D、等于[答案]A[解析]分段函数在x=3处不是无限靠近同一个值,故不存在极限.[点评]对于分段函数,掌握好定义域的范围是关键。4、如图,正方形的边长为,延长至,使,连接、则()A、B、C、D、[答案]B[点评]注意恒等式sin2α+cos2α=1的使用,需要用α的的范围决定其正余弦值的正负情况.5、函数的图象
3、可能是()[答案]C[解析]采用排除法.函数恒过(1,0),选项只有C符合,故选C.[点评]函数大致图像问题,解决方法多样,其中特殊值验证、排除法比较常用,且简单易用.6、下列命题正确的是()A、若两条直线和同一个平面所成的角相等,则这两条直线平行B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D、若两个平面都垂直于第三个平面,则这两个平面平行[答案]C[解析]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A错;一个平面不在同一条直线的三点到另一个平面的距离
4、相等,则这两个平面平行,故B错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D错;故选项C正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式.7、设、都是非零向量,下列四个条件中,使成立的充分条件是()A、B、C、D、且[答案]D[解析]若使成立,则选项中只有D能保证,故选D.[点评]本题考查的是向量相等条件模相等且方向相同.学习向量知识时需注意易考易错零向量,其模为0且方向任意.8、已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。若点到该抛物线焦点的距离为,则()A、B、C、D、[答案]B[解析]设
5、抛物线方程为y2=2px(p>0),则焦点坐标为(),准线方程为x=,[点评]本题旨在考查抛物线的定义:
6、MF
7、=d,(M为抛物线上任意一点,F为抛物线的焦点,d为点M到准线的距离).9、某公司生产甲、乙两种桶装产品。已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克。每桶甲产品的利润是300元,每桶乙产品的利润是400元。公司在生产这两种产品的计划中,要求每天消耗、原料都不超过12千克。通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是()A、1800元B、2400元C、2800元D、3100元[答案]C[解析]设
8、公司每天生产甲种产品X桶,乙种产品Y桶,公司共可获得利润为Z元/天,则由已知,得Z=300X+400Y且画可行域如图所示,目标函数Z=300X+400Y可变形为Y=这是随Z变化的一族平行直线解方程组即A(4,4)[点评]解决线性规划题目的常规步骤:一列(列出约束条件)、二画(画出可行域)、三作(作目标函数变形式的平行线)、四求(求出最优解).10、如图,半径为的半球的底面圆在平面内,过点作平面的垂线交半球面于点,过圆的直径作平面成角的平面与半球面相交,所得交线上到平面的距离最大的点为,该交线上的一点满足,则、两点间的球面距离为()A、B、C、D、[答案]A[来源:学。科。网][
9、解析]以O为原点,分别以OB、OC、OA所在直线为x、y、z轴,则A[点评]本题综合性较强,考查知识点较为全面,题设很自然的把向量、立体几何、三角函数等基础知识结合到了一起.是一道知识点考查较为全面的好题.要做好本题需要有扎实的数学基本功.11、方程中的,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有()A、60条B、62条C、71条D、80条[答案]B[解析]方程变形得,若表示抛物线,则所以,分b=-3,-2,1,2,3五种情况:(1)若b=-3,;(2)若b=3,以上两种情况
此文档下载收益归作者所有