一元二次方程的解法因式分解法、直接开平方法

一元二次方程的解法因式分解法、直接开平方法

ID:1717878

大小:103.00 KB

页数:7页

时间:2017-11-13

一元二次方程的解法因式分解法、直接开平方法_第1页
一元二次方程的解法因式分解法、直接开平方法_第2页
一元二次方程的解法因式分解法、直接开平方法_第3页
一元二次方程的解法因式分解法、直接开平方法_第4页
一元二次方程的解法因式分解法、直接开平方法_第5页
资源描述:

《一元二次方程的解法因式分解法、直接开平方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、1.2.1因式分解法、直接开平方法(1)教学目标1、进一步体会因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。2、会用因式分解法解某些一元二次方程。3、进一步让学生体会“降次”化归的思想。重点难点重点:,掌握用因式分解法解某些一元二次方程。难点:用因式分解法将一元二次方程转化为一元一次方程。教学过程(一)复习引入1、提问:(1)解一元二次方程的基本思路是什么?(2)现在我们已有了哪几种将一元二次方程“降次”为一元一次方程的方法?2、用两种方法解方程:9(1-3x)2=25(二)创设情境说明:可用因式分解法或直接开平方法解此方程。解得x1=,x2=-。1

2、、说一说:因式分解法适用于解什么形式的一元二次方程。归纳结论:因式分解法适用于解一边为0,另一边可分解成两个一次因式乘积的一元二次方程。2、想一想:展示课本1.1节问题二中的方程0.01t2-2t=0,这个方程能用因式分解法解吗?(三)探究新知引导学生探索用因式分解法解方程0.01t2-2t=0,解答课本1.1节问题二。把方程左边因式分解,得t(0.01t-2)=0,由此得出t=0或0.01t-2=0解得tl=0,t2=200。t1=0表明小明与小亮第一次相遇;t2=200表明经过200s小明与小亮再次相遇。(四)讲解例题1、展示课本P.8例3。按课本方式引导学生用因式分解法解

3、一元二次方程。2、让学生讨论P.9“说一说”栏目中的问题。要使学生明确:解方程时不能把方程两边都同除以一个含未知数的式子,若方程两边同除以含未知数的式子,可能使方程漏根。3、展示课本P.9例4。让学生自己尝试着解,然后看书上的解答,交换批改,并说一说在解题时应注意什么。(五)应用新知课本P.10,练习。(六)课堂小结1、用因式分解法解一元二次方程的基本步骤是:先把一个一元二次方程变形,使它的一边为0,另一边分解成两个一次因式的乘积,然后使每一个一次因式等于0,分别解这两个一元一次方程,得到的两个解就是原一元二次方程的解。2、在解方程时,千万注意两边不能同时除以一个含有未知数的代

4、数式,否则可能丢失方程的一个根。(七)思考与拓展用因式分解法解下列一元二次方程。议一议:对于含括号的守霜露次方程,应怎样适当变形,再用因式分解法解。(1)2(3x-2)=(2-3x)(x+1);(2)(x-1)(x+3)=12。[解](1)原方程可变形为2(3x-2)+(3x-2)(x+1)=0,(3x-2)(x+3)=0,3x-2=0,或x+3=0,所以xl=,x2=-3(2)去括号、整理得x2+2x-3=12,x2+2x-15=0,(x+5)(x-3)=0,x+5=0或x-3=0,所以x1=-5,x2=3先让学生动手解方程,然后交流自己的解题经验,教师引导学生归纳:对于含括

5、号的一元二次方程,若能把括号看成一个整体变形,把方程化成一边为0,另一边为两个一次式的积,就不用去括号,如上述(1);否则先去括号,把方程整理成一般形式,再看是否能将左边分解成两个一次式的积,如上述(2)。布置作业教学后记:1.2.1因式分解法、直接开平方法(2)教学目标1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。3、引导学生体会“降次”化归的思路。重点难点重点:掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。难点:通过分解因式或直接开平方将一

6、元二次方程降次为一元一次方程。教学过程(一)复习引入1、判断下列说法是否正确(1)若p=1,q=1,则pq=l(),若pq=l,则p=1,q=1();(2)若p=0,g=0,则pq=0(),若pq=0,则p=0或q=0();(3)若x+3=0或x-6=0,则(x+3)(x-6)=0(),若(x+3)(x-6)=0,则x+3=0或x-6=0();(4)若x+3=或x-6=2,则(x+3)(x-6)=1(),若(x+3)(x-6)=1,则x+3=或x-6=2()。答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。2、填空:若x2=a;则x叫a的,x=;若x2=4,则x=

7、;若x2=2,则x=。答案:平方根,±,±2,±。(二)创设情境前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程)。由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗?引导学生思考得出结论:解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。给出1.1节问题一中的方程:(35-2x)2-900=0。问:怎样将这个方程“降次”为一元一次方程?(三)探究新知让学生对上述问题展开讨论,教师再利用“

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。