欢迎来到天天文库
浏览记录
ID:1708367
大小:1.24 MB
页数:11页
时间:2017-11-13
《2010高考山东文数(含解析)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、绝密★启用前2010年普通高等学校招生全国统一考试(山东卷)文科数学(全解析)注意事项:1答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上.并将准考证号条形码粘贴在答题卡上的指定位置,用2B铅笔将答题卡上试卷类型B后的方框涂黑。2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。答在试题卷、草稿纸上无效。3填空题和解答题用05毫米黑色墨水箍字笔将答案直接答在答题卡上对应的答题区域内。答在试题卷、草稿纸上无效。4考生必须保持答题卡的整洁。考试结束后,
2、请将本试题卷和答题卡一并上交。第I卷(共60分)一.选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。(1)已知全集,集合,则=A.B.C.D.(3)函数的值域为-11-A.B.C.D.【答案】A【解析】因为,所以,故选A。【命题意图】本题考查对数函数的单调性、函数值域的求法等基础知识。(4)在空间,下列命题正确的是A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【命题意图】本题考查平均数与方差的求法,属基础
3、题。(7)设是首项大于零的等比数列,则“”是“数列是递增数列”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案】C【解析】若已知,则设数列的公比为,因为,所以有,解得-11-又,所以数列是递增数列;反之,若数列是递增数列,则公比且,所以,即,所以是数列是递增数列的充分必要条件。【命题意图】本题考查等比数列及充分必要条件的基础知识,属保分题。(8)已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为(A)13万件(B)11万件
4、(C)9万件(D)7万件(10)观察,,,由归纳推理可得:若定义在上的函数满足,记为的导函数,则=(A)(B)(C)(D)【答案】D【解析】由给出的例子可以归纳推理得出:若函数是偶函数,则它的导函数是奇函数,因为定义在上的函数满足,即函数是偶函数,所以它的导函数-11-是奇函数,即有=,故选D。【命题意图】本题考查函数、归纳推理等基础知识,考查同学们类比归纳的能力。(11)函数的图像大致是【答案】A【解析】因为当x=2或4时,2x-=0,所以排除B、C;当x=-2时,2x-=,故排除D,所以选A。【命题意图】本题考查函数的图象,考
5、查同学们对函数基础知识的把握程度以及数形结合的思维能力。(12)定义平面向量之间的一种运算“”如下:对任意的,,令,下面说法错误的是(A)若a与b共线,则(B)(C)对任意的,有(D)【答案】B【解析】若与共线,则有,故A正确;因为,而,所以有,故选项B错误,故选B。【命题意图】本题在平面向量的基础上,加以创新,属创新题型,考查平面向量的基础知识以及分析问题、解决问题的能力。二、填空题:本大题共4小题,每小题4分,共16分.(13)执行右图所示的程序框图,若输入,则输出y的值为.【答案】【解析】当x=4时,y=,此时
6、y-x
7、=3
8、;当x=1时,y=,此时
9、y-x
10、=;-11-当x=时,y=,此时
11、y-x
12、=,故输出y的值为。【命题意图】本题考查程序框图的基础知识,考查了同学们的试图能力。(14)已知,且满足,则xy的最大值为.(16)已知圆C过点(1,0),且圆心在x轴的正半轴上,直线l:被该圆所截得的弦长为,则圆C的标准方程为.【答案】【解析】由题意,设圆心坐标为,则由直线l:被该圆所截得的弦长为得,,解得或-1,又因为圆心在x轴的正半轴上,所以,故圆心坐标为(3,0),又已知圆C过点(1,0),所以所求圆的半径为2,故圆C的标准方程为。【命题意图】本题
13、考查了直线的方程、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力。三、解答题:本大题共6小题,共74分.(17)(本小题满分12分)已知函数()的最小正周期为,(Ⅰ)求的值;-11-(Ⅱ)将函数的图像上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图像,求函数在区间上的最小值.【命题意图】本小题主要考察综合运用三角函数公式、三角函数的性质,进行运算、变形、转换和求解的能力。【解析】因此1g(x),故g(x)在此区间内的最小值为1.(18)(本小题满分12分)已知等差数列满足:,.的前n项和为.(Ⅰ)求及;(Ⅱ
14、)令(),求数列的前n项和.【命题意图】本题考查等差数列的通项公式与前n项和公式的应用、裂项法求数列的和,熟练数列的基础知识是解答好本类题目的关键。【解析】(Ⅰ)设等差数列的公差为d,因为,,所以有,解得,-11-所以;==。(Ⅱ)由(Ⅰ)知,所以
此文档下载收益归作者所有