中考 动点问题 02 教师版

中考 动点问题 02 教师版

ID:16501319

大小:283.43 KB

页数:4页

时间:2018-08-10

中考 动点问题 02 教师版_第1页
中考 动点问题 02 教师版_第2页
中考 动点问题 02 教师版_第3页
中考 动点问题 02 教师版_第4页
资源描述:

《中考 动点问题 02 教师版》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、中考动点问题02一、以动态几何为主线的压轴题(一)点动问题.1.(徐汇区)如图,中,,,点在边上,且,以点为顶点作,分别交边于点,交射线于点.(1)当时,求的长;(2)当以点为圆心长为半径的⊙和以点为圆心长为半径的⊙相切时,求的长;(3)当以边为直径的⊙与线段相切时,求的长.[题型背景和区分度测量点]本题改编自新教材九上《相似形》24.5(4)例六,典型的一线三角(三等角)问题,试题在原题的基础上改编出第一小题,当E点在AB边上运动时,渗透入圆与圆的位置关系(相切问题)的存在性的研究形成了第二小题,加入直线与圆的位置关系(相切问题)的存在性的研究形成了第三小题.区分度测量点在直线与圆的位置关系

2、和圆与圆的位置关系,从而利用方程思想来求解.[区分度性小题处理手法]1.直线与圆的相切的存在性的处理方法:利用d=r建立方程.2.圆与圆的位置关系的存在性(相切问题)的处理方法:利用d=R±r()建立方程.3.解题的关键是用含的代数式表示出相关的线段.解:(1)证明∽∴,代入数据得,∴AF=2(2) 设BE=,则利用(1)的方法,相切时分外切和内切两种情况考虑:外切,,;内切,,.∴当⊙和⊙相切时,的长为或.(3)当以边为直径的⊙与线段相切时,.ABCDEOlA′(二)线动问题:在矩形ABCD中,AB=3,点O在对角线AC上,直线l过点O,且与AC垂直交AD于点E.(1)若直线l过点B,把△A

3、BE沿直线l翻折,点A与矩形ABCD的对称中心A'重合,求BC的长;(2)若直线l与AB相交于点F,且AO=AC,设AD的长为,五边形BCDEF的面积为S.①求S关于的函数关系式,并指出的取值范围;ABCDEOlF②探索:是否存在这样的,以A为圆心,以长为半径的圆与直线l相切,若存在,请求出的值;若不存在,请说明理由.[题型背景和区分度测量点]本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到.第一小题考核了学生轴对称、矩形、勾股定理三小块知识内容;当直线沿AB边向上平移时,探求面积函数解析式为区分测量点一、加入直线与圆的位置关系(相切问题)的存在性的研究形成了区分度测量点二.[区分度

4、性小题处理手法]1.找面积关系的函数解析式,规则图形套用公式或用割补法,不规则图形用割补法.2.直线与圆的相切的存在性的处理方法:利用d=r建立方程.3.解题的关键是用含的代数式表示出相关的线段.(1)∵A’是矩形ABCD的对称中心∴A’B=AA’=AC,∵AB=A’B,AB=3∴AC=6(2)①,,,∴,,()②若圆A与直线l相切,则,(舍去),∵∴不存在这样的,使圆A与直线l相切.(三)面动问题如图,在中,,、分别是边、上的两个动点(不与、重合),且保持,以为边,在点的异侧作正方形.(1)试求的面积;(2)当边与重合时,求正方形的边长;(3)设,与正方形重叠部分的面积为,试求关于的函数关系

5、式,并写出定义域;(4)当是等腰三角形时,请直接写出的长.[题型背景和区分度测量点]例七,典型的共角相似三角形问题,试题为了形成坡度,在原题的基础上改编出求等腰三角形面积的第一小题,当D点在AB边上运动时,正方形整体动起来,GF边落在BC边上时,恰好和教材中的例题对应,可以说是相似三角形对应的小高比大高=对应的小边比大边,探寻正方形和三角形的重叠部分的面积与线段AD的关系的函数解析式形成了第三小题,仍然属于面积类习题来设置区分测量点一,用等腰三角形的存在性来设置区分测量点二.[区分度性小题处理手法]1.找到三角形与正方形的重叠部分是解决本题的关键,如上图3-1、3-2重叠部分分别为正方形和矩形

6、包括两种情况.2.正确的抓住等腰三角形的腰与底的分类,如上图3-3、3-4、3-5用方程思想解决.3.解题的关键是用含的代数式表示出相关的线段.解:(1).(2)令此时正方形的边长为,则,解得.(3)当时,,当时,.(4).例1:已知⊙O的弦AB的长等于⊙O的半径,点C在⊙O上变化(不与A、B)重合,求∠ACB的大小.分析:点C的变化是否影响∠ACB的大小的变化呢?我们不妨将点C改变一下,如何变化呢?可能在优弧AB上,也可能在劣弧AB上变化,显然这两者的结果不一样。那么,当点C在优弧AB上变化时,∠ACB所对的弧是劣弧AB,它的大小为劣弧AB的一半,因此很自然地想到它的圆心角,连结AO、BO,

7、则由于AB=OA=OB,即三角形ABC为等边三角形,则∠AOB=600,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=∠AOB=300,当点C在劣弧AB上变化时,∠ACB所对的弧是优弧AB,它的大小为优弧AB的一半,由∠AOB=600得,优弧AB的度数为3600-600=3000,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=1500,因此,本题的答案有两个,分别为300或1500.变式1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。