(论文)高斯模糊图像的正则逆扩散方程复原方法

(论文)高斯模糊图像的正则逆扩散方程复原方法

ID:16461965

大小:1.77 MB

页数:12页

时间:2018-08-10

(论文)高斯模糊图像的正则逆扩散方程复原方法_第1页
(论文)高斯模糊图像的正则逆扩散方程复原方法_第2页
(论文)高斯模糊图像的正则逆扩散方程复原方法_第3页
(论文)高斯模糊图像的正则逆扩散方程复原方法_第4页
(论文)高斯模糊图像的正则逆扩散方程复原方法_第5页
资源描述:

《(论文)高斯模糊图像的正则逆扩散方程复原方法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、高斯模糊图像的正则逆扩散方程复原方法摘要:利用高斯卷积和线性扩散的等价性,从偏微分方程逆问题的角度,提出了一种针对高斯模糊图像的复原方法:RBD-PDE(RegularizedBackwardDiffusion);从频率域角度分析了逆扩散方程的正则化表达式和正则滤波之间的关系;得出正则滤波器最佳截止频率和反向扩散时间之间的关系,为以实验的方式进行盲反卷积提供便利。较传统的基于能量范涵的复原方法,如维纳滤波或TV模型,RBD-PDE方法具有最佳复原效果(在高斯核标准方差已知或未知的情况下,RBD的结果均优于传统能

2、量泛函方法的最佳结果)。关键词:偏微分方程,逆问题,正则化,图像复原1引言图像复原是图像处理中的经典问题,对于线性系统,图像的模糊过程可以看作原始的清晰图像与核函数(本文假设高斯核)的卷积,而图像复原或反卷积(去卷积)是从模糊图像复原清晰图像的过程,数学形式为:(1)图像反卷积包括核函数已知与核函数未知(盲反卷积)的两种情况,已有大量的研究文献提出了多种方法,如文献[1~3,7]为核函数已知情况,文献[4~6,10,12]为核函数未知的情况等。大多数方法都基于能量泛函理论,通过加入约束条件建立优化模型,如维纳滤

3、波方法、有约束的最小二乘法、整体变分(TV)模型[7]等,或使用自然图像的统计特性取代梯度[4,6,10,11,12],以实现稳定和准确的进行求解。对于基于能量泛函的方法,准确知道核函数对于复原效果起着至关重要的作用[13]。当高斯核函数的标准方差未知时,有无数组满足式(1),因此,需要加入对的假设(先验知识)。稀疏性是最常用的假设,对于主要应用于运动模糊的盲卷积能取得较好的效果[4,5,6,10]。但是当稀疏性不满足时,例如高斯核函数,传统的基于稀疏先验的方法难以取得较好的效果。不同于传统的基于能量泛函的方法

4、,本文从偏微分方程和逆问题的角度出发,提出一种全新的针对高斯模糊图像的复原方法:RBD-PDE(RegularizedBackwardHeatDiffusion)。较之于传统的基于能量泛函的方法,RBD-PDE在高斯核标准方差未知的情况下,仍然能够有效地实现图像复原,性能优于传统方法。RBD-PDE容易和现有的线性或非线性偏微分方程方法相结合,构成新的复原模型,因此具有更大的灵活性和方法的可拓展性。对于运动模糊图像已有许多有效的复原方法[4,5,10],而复杂的图像模糊可以分解为运动模糊和高斯模糊[???],并

5、分别进行复原。因此,高斯模糊的复原方法具有很重要的研究和实用价值。2正向和逆扩散方程线性热扩散方程的解为高斯核(热核)函数与初始条件函数的卷积,热扩散过程等价于高斯模糊过程。自然的,从偏微分方程角度看,图像复原可视为正向热扩散的逆过程。2.1正向扩散方程对于线性热扩散偏微分方程:(2)其中,是一个二维变量。为热扩散方程的初始条件,对于图像问题,表示原始的清晰图像。假设定义在区间上,式(2)的解为[9]:(3)表示二维高斯核函数:(4)的标准差。在已知的条件下,图像复原问题等价于求解式(3)的(第一类Fredho

6、lm积分方程)。现有许多求解方法,例如LTI(线性时间不变)维纳滤波:(5)其中分别表示傅里叶变换及逆变换算子,“”表示算子的作用,“*”表示算子的伴随(共轭转置),为正则参数,一些改进复原方法[2,3],可以看作对的优化。若式(2)中加入边界条件的约束,式(5)中的可为傅里叶变换及逆变换的特殊形式。例如对于第二类边界条件(本文中使用的边界条件),表示余弦变换及逆变换。2.2逆扩散方程在核函数未知的情况下,无法直接通过式(5)求解。但是可以从式(2)出发,通过逆过程,得到的估计值,即将盲反卷积问题转换为一个偏微

7、分方程逆问题。引理1:假设模糊图像是经过线性扩散方程(2)(式(3)高斯核卷积)得到的,在理想情况下(没有噪声和计算误差),总可以通过逆扩散方程:(6)得到式(2)中的初始条件。证明:对式(2)和式(6)两端做傅里叶变换,可得:(7)(8),是一个二维频率域变量。表示的傅里叶变换;求解常微分方程(7)和(8),最终可得:(9)因此,当时,,从而。并且,在满足的条件下,,即在满足引理1的假设条件下,总可以通过实验的方法稳定地求得原始的清晰图像。2.3逆扩散方程的病态性在噪声存在的情况下(本文假设噪声是方差为加性高

8、斯白噪声),即式(6)中:(10)进而可以得到噪声情况下式(6)的结果为:(11)表示无噪声精确解,为噪声放大项:(12)服从期望为0方差为的高斯分布,由式(12)可以看出,噪声中的高频分量将被迅速放大(以指数速度),覆盖真实(希望得到的复原)结果,使得实际应用中,无法直接利用式(6)进行图像复原。3正则逆扩散方程利用逆扩散方程进行图像复原最早由Garbor提出。由于逆扩散方程的病态性

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。