资源描述:
《一些解决tsp问题的算法及源代码》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、模拟退火算法 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解
2、重复“产生新解→计算目标函数差→接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(CoolingSchedule)控制,包括控制参数的初值t及其衰减因子Δt、每个t值时的迭代次数L和停止条件S。3.5.1模拟退火算法的模型 模拟退火算法可以分解为解空间、目标函数和初始解三部分。 模拟退火的基本思想: (1)初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点),每个T值的迭代次数L (2)对k=1,……,L
3、做第(3)至第6步: (3)产生新解S′ (4)计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数 (5)若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解. (6)如果满足终止条件则输出当前解作为最优解,结束程序。终止条件通常取为连续若干个新解都没有被接受时终止算法。 (7)T逐渐减少,且T->0,然后转第2步。算法对应动态演示图:模拟退火算法新解的产生和接受可分为如下四个步骤: 第一步是由一个产生函数从当前解产生一个位于解空间的新解;为便于后续的计算
4、和接受,减少算法耗时,通常选择由当前新解经过简单地变换即可产生新解的方法,如对构成新解的全部或部分元素进行置换、互换等,注意到产生新解的变换方法决定了当前新解的邻域结构,因而对冷却进度表的选取有一定的影响。 第二步是计算与新解所对应的目标函数差。因为目标函数差仅由变换部分产生,所以目标函数差的计算最好按增量计算。事实表明,对大多数应用而言,这是计算目标函数差的最快方法。 第三步是判断新解是否被接受,判断的依据是一个接受准则,最常用的接受准则是Metropo1is准则:若Δt′<0则接受S′作为新的当前解S,否则以
5、概率exp(-Δt′/T)接受S′作为新的当前解S。 第四步是当新解被确定接受时,用新解代替当前解,这只需将当前解中对应于产生新解时的变换部分予以实现,同时修正目标函数值即可。此时,当前解实现了一次迭代。可在此基础上开始下一轮试验。而当新解被判定为舍弃时,则在原当前解的基础上继续下一轮试验。 模拟退火算法与初始值无关,算法求得的解与初始解状态S(是算法迭代的起点)无关;模拟退火算法具有渐近收敛性,已在理论上被证明是一种以概率l收敛于全局最优解的全局优化算法;模拟退火算法具有并行性。3.5.2模拟退火算法的简单应用
6、 作为模拟退火算法应用,讨论货郎担问题(TravellingSalesmanProblem,简记为TSP):设有n个城市,用数码1,…,n代表。城市i和城市j之间的距离为d(i,j)i,j=1,…,n.TSP问题是要找遍访每个域市恰好一次的一条回路,且其路径总长度为最短.。 求解TSP的模拟退火算法模型可描述如下: 解空间解空间S是遍访每个城市恰好一次的所有回路,是{1,……,n}的所有循环排列的集合,S中的成员记为(w1,w2,……,wn),并记wn+1=w1。初始解可选为(1,……,n) 目标函数此时的目
7、标函数即为访问所有城市的路径总长度或称为代价函数: 我们要求此代价函数的最小值。 新解的产生随机产生1和n之间的两相异数k和m,若km,则将 (w1,w2,…,wk,wk+1,…,wm,…,wn) 变为: (wm,wm-1,…,w1,wm+1,…,wk-1,wn,wn-1,…,wk). 上述变换方法可简单说成是“逆转中间或者逆转两端”。 也可以
8、采用其他的变换方法,有些变换有独特的优越性,有时也将它们交替使用,得到一种更好方法。 代价函数差设将(w1,w2,……,wn)变换为(u1,u2,……,un),则代价函数差为:根据上述分析,可写出用模拟退火算法求解TSP问题的伪程序:ProcedureTSPSA: begin init-of-T;{T为初始温度} S={1,……,n};{