欢迎来到天天文库
浏览记录
ID:16259030
大小:291.50 KB
页数:9页
时间:2018-08-08
《matlab对线性系统稳定性的分析》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、MATLAB对线性系统稳定性的分析摘要:本文对线性系统从时域、复域和频域进行了稳定性分析,总结了控制系统的主要判据,分析过程简单,结合实例验证了其真实性、有效性。关键词:线性系统稳定性MATLAB引言:一个控制系统要能正常工作,必须首先是一个稳定的系统,即当系统受到外界干扰后,虽然它的平衡状态被破坏,但在外扰去掉以后,它仍有能力自动地在平衡状态下继续工作。在已知一个系统的系统函数或状态空间表达式时,就可以对其系统的稳定性进行分析。但当系统的阶次较高时,绘图和计算需要花费大量的时间和精力。MATLAB是一
2、套高性能的数值计算和可视化软件,并拥有几十个工具箱,借助MATLAB的系统工具箱,就可以直观、方便地分析系统的稳定性。1、控制系统稳定性定义关于稳定性的定义有许多种,较典型的说法有两种:一种是由俄国学者李雅普诺夫首先提出的平衡状态稳定性,另一种指系统的运动稳定性。对于线线控制系统而言,这两种说法是等价的。根据李雅普诺夫稳定性理论,线性控制系统的稳定性可以定义如下:若线性控制系统在初始扰动的影响下,其过渡过程随着时间的推移逐渐衰减并趋向于零,则称该系统为渐近稳定,简称为稳定;反之,若在初始扰动影响下,系统
3、的过渡过程随时间的推移而发散,则称系统为不稳定。由上述稳定性定义可以推知,线性系统稳定的充分必要条件是:闭环系统特征方程的根都具有负实部,或者说闭环传递函数的极点均位于左半S开平面(不包括虚轴)。2、系统稳定性分析方法概述在经典控制理论中,常用时域分析法、复域分析法或频率分析法来分析控制系统的性能。不同的方法有不同的适用范围,下面对上述方法进行具体研究。2.1时域分析法在经典控制理论中,时域分析法是一种直接在时间域中对系统进行稳定性分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。在
4、时域分析系统的稳定性,必须研究在输入信号作用下,当时间t趋于无穷时,系统的输出响应趋于最终期值h(∞)。显然,一个稳定的系统,其时域响应曲线必须是衰减的。2.2复域分析法在复域中进行系统稳定性分析,尤其当系统参数K的变化时,选定合适的参数范围使系统达到所需要稳定要求。有两种方法:一是直接法,即对于较易得到系统闭环传递函数的场合,直接求出系统所有闭环极点,判断是否都具有负实部来确定系统的稳定性;二是根轨迹法,利用系统开闭环传递绘制根轨迹,由线性系统稳定的充分必要条件:闭环传递函数的极点均位于左半S开平面(
5、不包括虚轴),确定使根轨迹在左半S开平面部分时参数范围为系统稳定的区域。2.2.1直接法9假设闭环传递函数为=,则其特征方程写成一般形式:(1)若n≤2,可直接求取其特征方程根(即闭环极点)来判断系统稳定性,即使(1)有待定参数,也容易求出特征方程根的一般形式,但对于求取n>3的高阶系统特征方程式的根很麻烦,所以对高阶系统一般都采用间接法来判断稳定性,在时域中常采用间接方法是代数判据(也称劳斯判据)。2.2.2根轨迹法根轨迹法是一种图解方法,这种方法是根据系统开环零、极点的分布来研究系统中可变参数变化时
6、,系统闭环特征根的变化规律,从而研究系统的稳定性。因此,根轨迹法在控制系统的分析和设计中是一种很实用的工程方法。它的最大特点是能够很清晰地了解到闭环特征根的分布,一目了然地得出系统稳定时参数的取值范围,并且不必求出系统的闭环传递函数,适用于较复杂系统。根轨迹法的关键环节就是能够正确地绘制出系统的根轨迹,简单根轨迹可用试探法绘制,复杂根轨迹则应利用其绘制基本规则进行绘制。2.2.3频域分析法频域分析法是应用频率特性研究系统的一种经典方法,以系统的频率特性为数学模型,用bode图或其他图表作为分析工具。当系
7、统的开环传递函数表达式不易求出,就无法应用代数判据或根轨迹法判断闭环系统的稳定性,此时应用频率稳定判据就非常方便。其前提条件就是要正确地把系统的频率特性绘制成曲线,常用的频率特性曲线大致有三种:幅相曲线(极坐标图);bode图,也称为对数频率特性曲线;对数幅相曲线(尼科尔斯图)。曲线的绘制可根据系统的开环频率特性的表达式通过取值描点法、叠加法绘制根轨迹草图,或利用MATLAB等计算机辅助工具来实现。3、MATLAB实现系统稳定性分析3.1时域分析法判断系统的稳定性系统模型为WK(S)=,单位负反馈。利用
8、MATLAB工具箱提供的时域响应函数,给该系统施加单位冲激,观察它的响应,分析稳定性。程序如下:程序中num为开环传递函数分子系数矩阵,den为分母系数矩阵。系统的稳定性是指系统在遭受外界扰动偏离原来的平衡状态,当扰动消失后,系统自身仍有能力恢复到原来平衡状态的一种能力。从图1可以很直观地看出该系统是稳定的。9图1单位冲激响应图3.2直接判定法根据稳定的充分必要条件判别线性系统的稳定性,最简单的方法是求出系统所有极点,并观察是否含有实部大于
此文档下载收益归作者所有