专题训练-立体几何

专题训练-立体几何

ID:16236125

大小:595.00 KB

页数:5页

时间:2018-08-08

专题训练-立体几何_第1页
专题训练-立体几何_第2页
专题训练-立体几何_第3页
专题训练-立体几何_第4页
专题训练-立体几何_第5页
资源描述:

《专题训练-立体几何》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、拟建中的阜阳市中国XXXX国际服装城依托中国XX国际服装城,拟建成为皖西北地区规格最高、规模最大、商务及功能最优的现代化、国际化服装专业市场,建设规模占地约128亩,建筑面积约25万平方米,项目总投资约5亿元人民币。经过1--2年的开发建设,能达到正常运营期的中国XX.XX国际服装城将吸纳全国和世界各地的经销商、代理商企业物流总部等500—1000家,预计年交易额实现68亿元人民币,每年实现税收8000—10000万元人民币,每年实现利润1.68亿元人民币,实现就业和创业人员约2万以上。专题突破训练:立体几何1、已知

2、四棱锥的三视图如下图所示,是侧棱上的动点.(1)求四棱锥的体积;(2)是否不论点在何位置,都有?证明你的结论;(3)若点为的中点,求二面角的大小.ABCDPEABCDEF2、如图,已知平面,平面,△为等边三角形,,为的中点.(1)求证:平面;(2)求证:平面平面;(3)求直线和平面所成角的正弦值.3、如图所示,在矩形ABCD中,AD=2AB=2,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′—EC—B是直二面角.(1)证明:BE⊥CD′;(2)求二面角D′—BC—E的正切值.4、如图:直三棱柱

3、ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°.E为BB1的中点,D点在AB上且DE=.(Ⅰ)求证:CD⊥平面A1ABB1;(Ⅱ)求三棱锥A1-CDE的体积.经济增长:在优化结构、提高效益和降低消耗的基础上,“十一五”期市GDP年均增长12%以上(现14%以上),2010年达到650亿元以上,人均GDP力争1000美元;财政收入达到80亿元;规模以上工业销售达到550亿以上;全社会固定资产投资年均长20%,五年累计1000亿元;社会消费品销售额260亿元,年均增长20%,外贸进口总额2.5亿美元,年

4、均增长15%;五年累计招商引资突破500亿元,力争达到600亿元拟建中的阜阳市中国XXXX国际服装城依托中国XX国际服装城,拟建成为皖西北地区规格最高、规模最大、商务及功能最优的现代化、国际化服装专业市场,建设规模占地约128亩,建筑面积约25万平方米,项目总投资约5亿元人民币。经过1--2年的开发建设,能达到正常运营期的中国XX.XX国际服装城将吸纳全国和世界各地的经销商、代理商企业物流总部等500—1000家,预计年交易额实现68亿元人民币,每年实现税收8000—10000万元人民币,每年实现利润1.68亿元人民

5、币,实现就业和创业人员约2万以上。PBCDAEF5、如图,在底面是矩形的四棱锥中,面,、为别为、的中点,且,,(Ⅰ)求四棱锥的体积;(Ⅱ)求证:直线∥平面ABCA1B1C16、在直三棱柱中,,,且异面直线与所成的角等于,设.(1)求的值;(2)求平面与平面所成的锐二面角的大小.图67、(2009广州海珠)如图6,在直角梯形ABCP中,AP//BC,APAB,AB=BC=,D是AP的中点,E,F,G分别为PC、PD、CB的中点,将沿CD折起,使得平面ABCD,如图7.(Ⅰ)求证:AP//平面EFG;(Ⅱ)求二面角的大小

6、;图7(Ⅲ)求三棱椎的体积.8、(2009广州(一))如图,四棱锥中,平面,四边形是矩形,、分别是、的中点.若,.(Ⅰ)求证:平面;(Ⅱ)求点到平面的距离;经济增长:在优化结构、提高效益和降低消耗的基础上,“十一五”期市GDP年均增长12%以上(现14%以上),2010年达到650亿元以上,人均GDP力争1000美元;财政收入达到80亿元;规模以上工业销售达到550亿以上;全社会固定资产投资年均长20%,五年累计1000亿元;社会消费品销售额260亿元,年均增长20%,外贸进口总额2.5亿美元,年均增长15%;五年累

7、计招商引资突破500亿元,力争达到600亿元拟建中的阜阳市中国XXXX国际服装城依托中国XX国际服装城,拟建成为皖西北地区规格最高、规模最大、商务及功能最优的现代化、国际化服装专业市场,建设规模占地约128亩,建筑面积约25万平方米,项目总投资约5亿元人民币。经过1--2年的开发建设,能达到正常运营期的中国XX.XX国际服装城将吸纳全国和世界各地的经销商、代理商企业物流总部等500—1000家,预计年交易额实现68亿元人民币,每年实现税收8000—10000万元人民币,每年实现利润1.68亿元人民币,实现就业和创业人

8、员约2万以上。(Ⅲ)求直线平面所成角的正弦值.9、(2009广东揭阳)如图,已知是底面为正方形的长方体,,,点是上的动点.(1)试判断不论点在上的任何位置,是否都有平面垂直于平面?并证明你的结论;(2)当为的中点时,求异面直线与所成角的余弦值;(3)求与平面所成角的正切值的最大值.10、(2009广东潮州期末)如图,在四棱锥中,底面为直角梯形,

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。