资源描述:
《应用比例式建立函数解析式》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、应用比例式建立函数解析式例1、如图2,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=CE=.(1)如果∠BAC=30°,∠DAE=105°,试确定与之间的函数解析式;AEDCB图2(2)如果∠BAC的度数为,∠DAE的度数为,当,满足怎样的关系式时,(1)中与之间的函数解析式还成立?试说明理由.解:(1)在△ABC中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°,∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°,∴∠DAB+∠CAE=75°,又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△A
2、DB∽△EAC,∴,∴,∴.(2)由于∠DAB+∠CAE=,又∠DAB+∠ADB=∠ABC=,且函数关系式成立,∴=,整理得.当时,函数解析式成立.二、应用求图形面积的方法建立函数关系式ABCO图8H例2如图,在△ABC中,∠BAC=90°,AB=AC=,⊙A的半径为1.若点O在BC边上运动(与点B、C不重合),设BO=,△AOC的面积为.(1)求关于的函数解析式,并写出函数的定义域.(2)以点O为圆心,BO长为半径作圆O,求当⊙O与⊙A相切时,△AOC的面积.解:(1)过点A作AH⊥BC,垂足为H.∵∠BAC=90°,AB=AC=,∴BC=4,AH=BC=2.∴
3、OC=4-.∵,∴().(2)①当⊙O与⊙A外切时,在Rt△AOH中,OA=,OH=,∴.解得.此时,△AOC的面积=.②当⊙O与⊙A内切时,11在Rt△AOH中,OA=,OH=,∴.解得.此时,△AOC的面积=.综上所述,当⊙O与⊙A相切时,△AOC的面积为或.动态几何型压轴题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角
4、函数、线段或面积的最值。一、以动态几何为主线的压轴题(一)点动问题.1.(09年徐汇区)如图,中,,,点在边上,且,以点为顶点作,分别交边于点,交射线于点.(1)当时,求的长;(2)当以点为圆心长为半径的⊙和以点为圆心长为半径的⊙相切时,求的长;(3)当以边为直径的⊙与线段相切时,求的长.[区分度性小题处理手法]1.直线与圆的相切的存在性的处理方法:利用d=r建立方程.2.圆与圆的位置关系的存在性(相切问题)的处理方法:利用d=R±r()建立方程.3.解题的关键是用含的代数式表示出相关的线段.[略解]解:(1)证明∽∴,代入数据得,∴AF=2(2) 设BE=,则利
5、用(1)的方法,相切时分外切和内切两种情况考虑:外切,,;11内切,,.∴当⊙和⊙相切时,的长为或.(3)当以边为直径的⊙与线段相切时,.类题⑴一个动点:09杨浦25题(四月、五月)、09静安25题、⑵两个动点:09闸北25题、09松江25题、09卢湾25题、09青浦25题.(二)线动问题在矩形ABCD中,AB=3,点O在对角线AC上,直线l过点O,且与AC垂直交AD于点E.(1)若直线l过点B,把△ABE沿直线l翻折,点A与矩形ABCD的对称中心A'重合,求BC的长;ABCDEOlA′(2)若直线l与AB相交于点F,且AO=AC,设AD的长为,五边形BCDEF的
6、面积为S.①求S关于的函数关系式,并指出的取值范围;②探索:是否存在这样的,以A为圆心,以长为半径的圆与直线l相切,若存在,请求出的值;若不存在,请说明理由.[题型背景和区分度测量点]ABCDEOlF本题以矩形为背景,结合轴对称、相似、三角等相关知识编制得到.第一小题考核了学生轴对称、矩形、勾股定理三小块知识内容;当直线沿AB边向上平移时,探求面积函数解析式为区分测量点一、加入直线与圆的位置关系(相切问题)的存在性的研究形成了区分度测量点二.[区分度性小题处理手法]1.找面积关系的函数解析式,规则图形套用公式或用割补法,不规则图形用割补法.2.直线与圆的相切的存在
7、性的处理方法:利用d=r建立方程.3.解题的关键是用含的代数式表示出相关的线段.[略解](1)∵A’是矩形ABCD的对称中心∴A’B=AA’=AC∵AB=A’B,AB=3∴AC=6(2)①,,,∴,11()②若圆A与直线l相切,则,(舍去),∵∴不存在这样的,使圆A与直线l相切.[类题]09虹口25题.(三)面动问题如图,在中,,、分别是边、上的两个动点(不与、重合),且保持,以为边,在点的异侧作正方形.(1)试求的面积;(2)当边与重合时,求正方形的边长;(3)设,与正方形重叠部分的面积为,试求关于的函数关系式,并写出定义域;(4)当是等腰三角形时,请直接写出的
8、长.[题型