欢迎来到天天文库
浏览记录
ID:16167421
大小:39.00 KB
页数:15页
时间:2018-08-08
《例谈抽象函数解法(abstract the solution to abstract functions)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、例谈抽象函数解法(Abstractthesolutiontoabstractfunctions)Mywell-organizeddocumentAbstract:thesolutiontoabstractfunctionsThefunctionisthehotspotoftheannualcollegeentranceexaminationAndtheapplicationofabstractfunctionisoneofthedifficultpointsAnabstractfunctionisafunction
2、thatdoesnotgiveaspecificfunctionresolutionorimageButsomepropertiesoralgorithmsoffunctionsatisfactionaregivenSuchfunctiontestscancomprehensivelyexaminestudents'understandingoffunctionconceptsandtheirabilityofalgebraicreasoningandreasoningItcanalsoexaminestudent
3、s'understandingandacceptanceofmathematicalsymbollanguageAndunderstandingofgeneralandspecialrelationshipsSothepropositionalfavorInthelastfewyears,thehighexamquestionisconstantlyappearingBecauseabstractfunctionshavesomeabstractionItsnatureishiddenSostudentsaremo
4、reafraidofabstractfunctionsActually,AlargenumberofabstractfunctionsareabstractedfromthebasicfunctionslearnedinmiddleschoolWhentheproblemsolvingStartwiththebackgroundofstudyingabstractfunctionsAccordingtothenatureoftheabstractfunctionByanalogy,guessthatitmightb
5、esomebasicfunctionYoucanalwaysfindawaytodothisThisarticlestartswiththisunderstandingInthispaper,somecommontypesofabstractfunctionsandtheirsolutionsarediscussed1.LinearfunctionalabstractfunctionsLinearfunctionalabstractfunctionsIt'safunctionthatisabstractedbyli
6、nearfunctionsThebasictype:f(x+y)=f(x)+f(y)typicalfunction:f(x)=kxSomedatawhicharefrequentlyused:f(0)=f(0+0)=f(0)+f(0)∴f(0)=0F(0)=f(x-x)=f(x)+f(x)∴f(x)=f(x)-Weknowthatf(x+y)=f(x)+f(y).F(4)=16Let'stakefofminus2.F(4)=f(2+2)=f(2)+f(2)=16∴8∴f(2)=f(2)=f(2)=8Weknowth
7、atthisisafunctionoff(x)onRF(2)=1,f(x+y)=f(x)+f(y)Theinequality:f(x)+f(x-2)<3Analysis:itisassumedthatf(x)isanabstractfunctionofy=xAndfofxisamonotoneadditionSolution:3=3f(2)=f(2)+f(2)+f(2)=f(6).∴f(x)+f(x2)<3=f(6)∴x+(x-2)<6∴x<4Example3.Thefunctionf(x)isknowntoany
8、realnumberxyIhavef(x+y)=f(x)+f(y).AndwhenxBBB00F(x)>0Fofnegative1isminus2IwantfofxintheintervalTherangeofthetopAnalysis:itisknownfromtheproblemsetFunctionfofxisanabstractfunctionSo
此文档下载收益归作者所有