inn半导体材料及器件研究进展

inn半导体材料及器件研究进展

ID:16164050

大小:62.50 KB

页数:10页

时间:2018-08-08

inn半导体材料及器件研究进展_第1页
inn半导体材料及器件研究进展_第2页
inn半导体材料及器件研究进展_第3页
inn半导体材料及器件研究进展_第4页
inn半导体材料及器件研究进展_第5页
资源描述:

《inn半导体材料及器件研究进展》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、InN半导体材料及器件研究进展摘要:InN是性能优良的三五族化合物半导体材料,在光电子领域有着非常重要的应用价值,因此一直是国际国内研究的焦点。这里,就InN材料的制备方法、P型掺杂、电学特性、光学特性、高温退火特性、器件的研究应用以及研究的最新进展进行了综述。关键词:InN制备特性应用太赫兹辐射进展1.引言: 三族氮化物半导体材料GaN、AlN、InN是性能优越的半导体材料。在光电子器件方面已有重要的应用,在光电集成、超高速微电子器件及集成电路上也有十分广阔的前景。但是因为InN具有低得离解温度,要求低温生长,而

2、作为氮源的NH3的分解温度较高,这是InN生长的一对矛盾。其次,对已氮化銦材料生长又缺少与之匹配的衬底材料,使得高质量氮化銦材料生长特别困难,有没有什么进展。后来的理论研究表明,InN具有极高的漂移速度和电子渡越速度以及最小的有效电子质量。同时电子迁移率也比较高。因此,InN材料是理想的高速、高频晶体管材料。最近研究表明:InN的禁带宽度也许是0.7eV左右,而不是先前普遍接受的1.9eV,所以通过调节合金组分可以获得从0.6eV(InN)到6.2eV(AlN)的连续可调直接带隙,这样利用单一体系的材料就可以制备覆

3、盖从近红外到深紫外光谱范围的光电器件。因此,InN有望成为长波长半导体光电器件、全彩显示、高效率太阳能电池的优良半导体材料。理论研究表明,1nN材料在Ⅲ族氮化物半导体材料中具有最高的迁移率(室温下最大的迁移率是14000平方厘米/Vs)、峰值速率、电子漂移速率和尖峰速度(4.3×107cm/s)以及具有最小的有效电子质量m*=0.05m0。这些特性使得InN在高频率,高速率晶体管的应用上有着非常独特的优势。然而,由于InN的制备和检测都比较困难,对其研究和应用还很不完善。尽管如此,随着材料生长技术的不断发展进步以及

4、材料生长工艺的提高,现在已经可以在不同衬底材料上外延生长得到质量较好的InN薄膜单晶材料,同时,由于测量技术的进一步提高,使得InN材料的研究和应用迈进了很大一步。一些相关的应用研究和器件也已有很多报道:如用作异质结场效应管,气体/液体传感器,异质结太阳能电池的透明传导窗口材料,InN/Sip-n结;InN薄膜已经被尝试着作为Li离子薄膜电池的阳极;还有InN热电器件以及太赫兹发射器件;InN的欧姆接触也已经被证实,InN/GaN的肖特基接触也已经实现;对于P型掺杂方面,也取得了显著成果;此外,InN具有很高的折射

5、率(>3),还可以应用到光子晶体的设计中。鉴于InN材料有如此重要的应用价值以及最近来自国际和国内的诸多报道,本文对InN材料的最新研究进展,包括电学、光学性质及其应用方面做些归纳和总结。  2.InN材料的最新研究进展2.1InN材料的制备  制备高质量的InN体单晶材料和外延薄膜单晶材料是研究和开发InN材料应用的前提。但是,制造InN薄膜有两大困难,一是InN材料的离解温度较低,在600℃左右就分解了,这就要求在低温生长下InN,而作为氮源的NH3的分解温度较高,要求1000℃左右,这是InN生长的一对矛盾,

6、因此采用一般的方法很难制备单晶体材料,目前制造InN薄膜最常用的方法是MBE、HVPE、磁控溅射、MOCVD技术;二是很难找到合适的衬底,由于InN 单晶非常难获得,所以必须得异质外延InN薄膜,这就很难避免晶格匹配这个大问题。一般都是在蓝宝石衬底上先生长氮化物的缓冲层,然后再异质外延InN薄膜,研究表明,GaN缓冲层上生长的InN薄膜比较理想。   当前,等离子体辅助(PA-MBE)技术是优良InN薄膜制备的主要方法。其直接以金属In的分子束作为Ⅲ族金属有机源,利用等离子体辅助增强技术激发NH3或N2作为N源,在

7、衬底材料表面反应生成InN。实验结果充分表明,这种方法制备的InN薄膜质量高,可重复性好:2006年3月,ChadS.Gallinat等人利用等离子体辅助MBE方法在GaN缓冲层上生长了In极化InN,室温下电子迁移率高达2250平方厘米/Vs,表面电子积累层密度为5.11×1013cm-2,最厚的InN样品禁带宽度约为0.65eV。随后,G.Koblmuller等人利用等离子体辅助MBE方法利用高质量的GaN模板的氮表面上生长了InN,实现室温电子迁移率高达2370平方厘米/Vs。表面电子积累层密度为3×1013

8、cm-2,InN样品禁带宽度约为0.626eV。MBE技术生长可以精确控制外延膜厚度,得到优良的外延材料,但生长的速度较慢,对于较厚要求的外延生长耗时过长,不能满足大规模生产的要求。对于光电器件,特别是LED、LD芯片,一般都采用MOCVD技术。  MOCVD技术是以In有机源为金属源,以N2作为载气,NH3作为氮源,通过二步工艺或其它手段在低温500℃左右

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。