欢迎来到天天文库
浏览记录
ID:16127732
大小:68.00 KB
页数:63页
时间:2018-08-08
《[经济数学基础形成性考核册答案]2013年电大【经济数学基础】形成性考核册答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、[经济数学基础形成性考核册答案]2013年电大【经济数学基础】形成性考核册答案篇一:2013年电大形成性考核册答案形成性考核册一、填空题1.limx?sinxxx?0?___________________.答案:1?x2?1,2.设f???k,?x?0x?0,在x?0处连续,则k?________.答案13.曲线y?x+1在的切线方程是答案:y=1/2X+3/24.设函数f?x2?2x?5,则f??____________.答案2x5.设f?xsinx,则f???__________2π.答案:??2二、单项选择题1.当x???时,下列变量为无穷小量
2、的是A.lnB.x2x?1C.e?1x2D.sinxx2.下列极限计算正确的是A.limxx?1B.limx?0x?x?0x?1C.limxsinx?01x?1D.limsinxxx???13.设y?lg2x,则dy?.A.12xdxB.1xln10dxC.ln10xdxD.1xdx4.若函数f在点x0处可导,则是错误的.A.函数f在点x0处有定义B.limf?A,但A?fx?x0C.函数f在点x0处连续D.函数f在点x0处可微5.若f?x,则f??.x1A.1x2B.?1x2C.1xD.?1x三、解答题1.计算极限limx?3x?2x?122x?1解
3、:原式=limx?1=limx?2x?1x?1=1?21?1??121limx?5x?6x?6x?822x?2解:原式=lim=limx?3x?4x?2x?2?2?32?4?12lim?x?1xx?0解:原式=limxx?0=lim1?x?1xx?0=lim?x?01?x?1=?12lim2x?3x?53x?2x?422x??522?0?02x解:原式=lim??x??43?0?033??2xxsin3xlimx?0sin5xsin3xsin3xlim33x?03x3133x??????解:原式=limx?0sin5xsin5x55515limx?05
4、x5x2?3x2?limx?4sin2x?2解:原式=limsinx?2?lim?limx?2x?2sinx?2?4?1?41?xsin?b,?x?2.设函数f??a,sinx??x?x?0x?0,x?0问:当a,b为何值时,f在x?0处极限存在?当a,b为何值时,f在x?0处连续.解:因为f在x?0处有极限存在,则有lim?f?lim?fx?0x?02又limf?lim?bx?0?1x?0?xlimf?limx?0?sinx?x?0x?1即b?1所以当a为实数、b?1时,f在x?0处极限存在.因为f在x?0处连续,则有limf?limf?fx?0?x
5、?0?又f?a,结合可知a?b?1所以当a?b?1时,f在x?0处连续.3.计算下列函数的导数或微分:y?x2?2x?logx解:y??2x?2ln2?2x?2,求y?12xln2y?ax?bcx?d,求y?=a?c2解:y?????2=ad?bc2y?13x?5,求y?解:y??[?12]???12?12?1???32?32y?x?xe,求y?1x解:y??????axx12x?12?e?xexxy?esinbx,求dyaxaxax解:y???sinbx?e??e?sinbx?edy?y?dx??=aeaxsinbx?beaxcosbxsinbx?b
6、eaxcosbx)dxy?ex?xx,求dy31131解:y??????ex??x2x21133?1??exx2?321x2dy?y?dx?dxx?e?x,求dy?x2解:y???????sinx??e?x2???2sin2xx?2xe?x2y?sinnx?sinnx,求y?解:y??[n]????nn?1??cosnx??nn?1cosx?ncosnxy?ln,求y?解:y??x?11?x1x??xcot1x2??x?21?x212)?)2=222?1?2x)?x?1?x2?x??x?x22?1?x2y?2?1?x2?x2x,求y?1x3256解:y
7、??????????26sinln2??12x??16x??0?21sixln2??xcosxx2111?32?16x?56?2ln2xcosx?12x?32?16x?564.下列各方程中y是x的隐函数,试求y?或dyx?y?xy?3x?1,求dy解:方程两边同时对x求导得:?????????2x?2yy??y?xy??3?0y?2x?32y?x2222y??4dy?y?dx?y?2x?32y?xdxsin?exy?4x,求y?解:方程两边同时对x求导得:xyxycosx???e???4cosx??e??4y??xexy)?4?cos?yexy4?co
8、s?yecos?xexyxyy??5.求下列函数的二阶导数:y?ln,求y??解:y??11?
此文档下载收益归作者所有