资源描述:
《天津市2018高考数学(文)二轮复习检测:题型练9大题综合练【含解析】》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2018届天津市高考数学(文)二轮复习检测题型练9 大题综合练(一)1.设f(x)=2sin(π-x)sinx-(sinx-cosx)2.(1)求f(x)的单调递增区间;(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g的值.2.某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损
2、零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(1)若n=19,求y与x的函数解析式;(2)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(3)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还
3、是20个易损零件?3.2018届天津市高考数学(文)二轮复习检测如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,∠ABC=,点D,E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥BC.(1)证明:AB⊥平面PFE;(2)若四棱锥P-DFBC的体积为7,求线段BC的长.4.已知{an}是等差数列,其前n项和为Sn,{bn}是等比数列,且a1=b1=2,a4+b4=27,S4-b4=10.(1)求数列{an}与{bn}的通项公式;(2)记Tn=a1b1+a2b2+…+anbn,n∈N*,证明Tn
4、-8=an-1bn+1(n∈N*,n>2).5.如图,在平面直角坐标系xOy中,已知直线l:x-y-2=0,抛物线C:y2=2px(p>0).(1)若直线l过抛物线C的焦点,求抛物线C的方程;(2)已知抛物线C上存在关于直线l对称的相异两点P和Q.①求证:线段PQ的中点坐标为(2-p,-p);②求p的取值范围.2018届天津市高考数学(文)二轮复习检测6.已知曲线f(x)=在点(1,f(1))处的切线与y轴垂直,F(x)=xexf'(x).(1)求k的值和F(x)的单调区间;(2)已知函数g(x)=-x2+2ax(a为正实数),
5、若对于任意x2∈[0,1],总存在x1∈(0,+∞)使得g(x2)6、x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=2sin-1的图象,再把得到的图象向左平移个单位,得到y=2sinx+-1的图象,即g(x)=2sinx+-1.所以g=2sin-1=.2.解(1)当x≤19时,y=3800;当x>19时,y=3800+500(x-19)=500x-5700.所以y与x的函数解析式为y=(x∈N).(2)由柱状图知,需更换的零件数不大于18的频率为0.46,不大于19的频率为0.7,故n的最小值为19.(3)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购
7、买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为(3800×70+4300×20+4800×10)=4000.若每台机器在购机同时都购买20个易损零件,则这100台机器中有902018届天津市高考数学(文)二轮复习检测台在购买易损零件上的费用为4000,10台的费用为4500,因此这100台机器在购买易损零件上所需费用的平均数为(4000×90+4500×10)=4050.比较两个平均数可知,购买1台机器的同时应购买19个易损零件.3.(1)证明由
8、DE=EC,PD=PC知,E为等腰△PDC中DC边的中点,故PE⊥AC.又平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,PE⊂平面PAC,PE⊥AC,所以PE⊥平面ABC,从而PE⊥AB.因∠ABC=,EF∥BC,故AB⊥EF.从而AB与平面PFE内两条