荷载横向分布综述

荷载横向分布综述

ID:16102077

大小:47.00 KB

页数:7页

时间:2018-08-07

荷载横向分布综述_第1页
荷载横向分布综述_第2页
荷载横向分布综述_第3页
荷载横向分布综述_第4页
荷载横向分布综述_第5页
资源描述:

《荷载横向分布综述》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、荷载横向分布综述(2007-09-1414:22:02)转载标签:知识/探索分类:专业技术 [荷载横向分布计算综述]   桥梁结构分析大致分为两大类:   一:直接采用三维有限元通用分析软件对结构作空间整体分析,以得到结构的内力(更多的是应力分析),即纯数值法;   二:将空间结构简化为平面结构用平面杆系程序分析,而空间效应通过荷载横向分布系数考虑,即所谓半解析数值法。   由于三维有限元程序分析使用中的各种限制条件(如应力分析对实际配筋设计指导性较差、模型建立的困难等等),往往不如单纯的平面分析考虑横向分布系数的方法简便、实用(有时精度也差不多,特别是大跨径结构恒、活载

2、比例的增大,两者差别更小),同时更有益于培养一个桥梁设计者对结构的定性分析、结构受力估算及有限元分析结果的正确判断等方面的能力。因此桥梁结构简化分析—荷载横向分布计算是必要的,并将与有限元分析互相补遗、长期并存!   实际的工作中主要也是简化分析(即荷载横向分布系数计算与平面杆系电算相结合)的多,而有限元用的少!   结构简化分析通常按以下步骤进行(结构尺寸已经初步拟定好):   1.计算桥跨结构荷载横向分布系数;   2.以荷载横向分布系数为乘积因子,按平面杆系结构进行桥跨结构的内力分析;   3.按建筑结构设计原理作构件的配筋设计。   对于荷载横向分布系数计算大致有

3、以下一些方法:   1.杠杆法;   2.梁格法,包括刚性横梁法(也称偏压法)以及修正刚性横梁法(修正偏压法)、弹性支承连续梁法;   3.梁系法,包括铰接板法、刚接板法、铰接梁法、刚接梁法;   4.板系法,如比拟正交异性板法(G-M法);   5.增大系数法(弯矩增大15%,剪力增大5%)等。   不同截面类型、不同的横向连接方式、桥跨结构的不同位置通常具有不同的荷载横向分布系数计算方法。   上述梁格法、梁系法及板系法等都是建立在等截面简支体系结构上的荷载横向分布计算方法。   增大系数法一般用于箱形截面梁设计,其主导思想来自杆件弯扭相互独立理论,即认为杆件的中心荷

4、载由梁的弯曲内力承担,而扭转荷载由杆件的自由与约束扭转内力承担,因截面翘曲约束正应力σw一般为纵向正应力σM的15%左右,故弯矩增大系数取1.15;而翘曲扭转剪应力τw约为弯曲剪应力τM的5%左右,故剪力增大系数取1.05;而实际上箱梁是弯扭共同作用,所以是不合理的,它与箱梁的综合抗扭刚度2H值有关,计算结果可能过安全也可能不安全,强烈建议慎用!   有关横向分布系数计算的详细分析参见李国豪、石洞《公路桥梁荷载横向分布计算》、胡肇滋《桥跨结构结构简化分析—荷载横向分布》等文献。 对于变截面简支梁和非简支体系桥跨结构其荷载横向分布的精确计算方法极其复杂,为了能利用适用于等截

5、面简支梁计算荷载横向分布系数的方法,通常采用‘等效简支梁法’来处理。其基本理念是把桥跨结构的某一跨按等刚度原则变换为跨度相同的等截面简支梁。所谓等刚度是指在桥梁的跨中施加一个集中力或者一个集中扭矩,则两者的跨中挠度和扭转角应分别彼此相等。即:ω'=f1(Lj,EI)=ω0=Lj^3/(48EI')和及φ'=f2(Lj,GIt)=ω0=Lj^2/(4GIt'),即换算抗弯惯矩I'=Cw*I,换算抗扭惯矩It'=Cφ*It。   特别地对于箱形截面,应考虑到跨中是否设置横隔梁在换算刚度计算时的差别。*****变截面简支梁桥:   1.刚度关于跨中按一次或二次曲线对称变化的等效

6、简支梁惯矩换算系数:Cw=10/(9+m),Cφ=3/(2+n)或Cφ=2/(1+n),此时I'=Cw*Ic,It'=Cφ*Itc。   2.刚度关于跨中按正弦Sin曲线对称变化的等效简支梁惯矩换算系数:Cw=0.15+0.85*m,Cφ=0.15+0.85*n,此时I'=Cw*Ic,It'=Cφ*Itc。   1.抗弯惯矩按抛物线变化:Ic/Ix=1+(m-1)(1-2x/Lj)(1-2x/Lj),m=Ic/I0,Cw=10/(9+m);抗扭惯矩也按抛物线变化:Itc/Itx=1+(n-1)(1-2x/Lj)(1-2x/Lj),n=Itc/It0,则Cφ=3/(2+n)

7、;如抗扭惯矩按一次(直线)变化:Itc/Itx=1+(n-1)(1-2x/Lj),则Cφ=2/(1+n)。   2.抗弯惯矩按正弦Sin曲线变化:Ix/I0=1+(m-1)Sin(πx/Lj),梁高hx=Ix/I0,m=Ic/I0,此时Cw=0.15+0.85*m;抗扭惯矩变化规律同上,即:Itx/It0=1+(n-1)Sin(πx/Lj),n=Itc/It0,则Cφ=0.15+0.85*n。   以上各式中Ic、Itc为变截面简支梁跨中截面抗弯、抗扭惯矩,I0、It0为变截面简支梁支点截面抗弯、抗扭惯矩。   通常的变截面简

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。