欢迎来到天天文库
浏览记录
ID:16088039
大小:181.50 KB
页数:4页
时间:2018-08-07
《苏教版高中数学选修1-1学案:2.2.2双曲线的几何性质》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、苏教版高中数学选修1-1学案年级高二学科数学选修1-1/2-1总课题2.3双曲线总课时第课时分课题2.3.2双曲线的几何性质分课时第1课时主备人梁靓审核人朱兵上课时间预习导读(文)阅读选修1-1第40--43页,然后做教学案,完成前三项。(理)阅读选修2-1第43--47页,然后做教学案,完成前三项。学习目标1.掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质2.掌握标准方程中的几何意义3.能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题一、预习检查1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方
2、程为.2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为.3、双曲线的渐进线方程为.4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是.二、问题探究探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同.苏教版高中数学选修1-1学案探究2、双曲线与其渐近线具有怎样的关系.练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是.例1根据以下条件,分别求出双曲线的标准方程.(1)过点,离心率.(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为.例2已知双曲线
3、,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率.苏教版高中数学选修1-1学案例3(理)求离心率为,且过点的双曲线标准方程.三、思维训练1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是.2、椭圆的离心率为,则双曲线的离心率为.3、双曲线的渐进线方程是,则双曲线的离心率等于=.4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则.四、知识巩固1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是.2、设
4、双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为.3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的最大值为.苏教版高中数学选修1-1学案4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率.5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和.求双曲线的离心率的取值范围.
此文档下载收益归作者所有