欢迎来到天天文库
浏览记录
ID:16076575
大小:1.15 MB
页数:13页
时间:2018-08-07
《多项式乘以多项式课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、主讲:吉庆镇晨光中学肖艳多项式与多项式相乘温故知新计算:-2X(3X2-X-5)单项式与多项式相乘,用单项式去乘多项式的每一项,再把所得的积相加。-解:原式==-2x·3x2(-2x)·(-x)(-2x)·(-5)++6x32x210x++nabmnnnbbbmmmaaa动动脑:这是一套四间房居室的平面图。怎样用代数式求出它的面积呢?nmab从整体上看平面图的面积﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍(a+b)表示为(m+n)abbma分上下两部分看平面图的面积m(a+b)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍分左右两部分看平面图的面积a(m+n)﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍mn ̄
2、n可表示为可表示为n(a+b)++b(m+n)nmabb分四部分看平面图的面积﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍可表示为ambn+bman++(a+b)(m+n)m(a+b)+n(a+b)a(m+n)+b(m+n)am+an+bm+bn讨论:求居室总面积的四个代数式,它们之间有什么联系?(a+b)(m+n)m(a+b)+n(a+b)am+an+bm+bn①②③④==找找看多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。=解︰(3x-y)(-x+2y)3x·(-x)==或-==-3x2+7xy-2y23x·2
3、y(-y)·(-x)(-y)·2y+++3x·x+3x·2y+y·x-y·2y=3x2-+6xy+xy-2y2-3x2+6xy-2y2+xy-3x2+7xy-2y2=例1计算:(3x-y)(-x+2y)解︰原式注意︰要合并同类项两个多项式相乘刚展开后的项数等于原两个多项式项数的积。例2计算:(x-1)(x2-x-2)解:原式=x3x3+x·x2-x·x-x·2-1·x2+1·x+1×2=-x2-2x-x2+x+2=-2x2-x+2别忘了合并同类项分别计算下列各多项式与多项式的积⑴(n+2)(n+3)=⑵(m-2)(m-3)=⑶(x+2)(x-3)=⑷(y-2)(y
4、+3)=探究比较所得的结果,你发现了什么﹖请用你的发现所得出的结论直接做下面的填空︰结论(x+a)(x+b)=n2+5n+6m2-5m+6x2-x-6y2+y-6x2+(a+b)x+ab计算:①(x-6)(x+1)=②(m+1)(m+4)=③(a+7)(a-2)=④(y-4)(y-3)=x2m2a2y2含同一个字母且相同字母的系数是1的两个二项式相乘,其结果是一个关于“相同字母”的二次三项式,结果中的一次项系数﹑常数项分别是原多项式中两个常数项的和﹑积。-5x-6+5m+4+5a-14-7y+12课堂小结⒈本节课我们学习了多项式的乘法运算,在运算过程中要注意:①要
5、注意先确定符号。②不要漏乘,记住两个“每一项”,一般地在没有合并同类项之前,两个多项式相乘展开后的项数是这两个多项式的项数之积。③展开式中有同类项要合并。⒉含同一个字母且相同字母的系数是1的两个二项式相乘,其结果是一个关于“相同字母”的二次三项式,结果中的一次项系数、常数项分别是原多项式中两个常数项的和﹑积。②(2a+b)2③(3a-2)(a-1)-(a+1)(a+2)④(x+y)(2x-y)(3x+2y)①(m-2n)(2m+n)计算:作业注意!③(3a-2)(a-1)-(a+1)(a+2)是多项式的积与积的差,后两个多项式乘积的展开式要用括号括起来。注意!④(
6、x+y)(2x-y)(3x+2y)是三个多项式相乘,应该选其中两个先相乘,把他们的积用括号括起来,再与第三个相乘。注意!计算②(2a+b)2应该这样做:(2a+b)2=(2a+b)(2a+b)切记:一般情况下(2a+b)2不等于4a2+b2﹒再见!
此文档下载收益归作者所有