资源描述:
《线性系统时域响应分析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、实验二线性系统时域响应分析一、实验目的1.熟练掌握step()函数和impulse()函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。2.通过响应曲线观测特征参量和对二阶系统性能的影响。二、基础知识及MATLAB函数(一)基础知识时域分析法直接在时间域中对系统进行分析,可以提供系统时间响应的全部信息,具有直观、准确的特点。为了研究控制系统的时域特性,经常采用瞬态响应(如阶跃响应、脉冲响应和斜坡响应)。本次实验从分析系统的性能指标出发,给出了在MATLAB环境下获取系统时域响
2、应和分析系统的动态性能和稳态性能的方法。用MATLAB求系统的瞬态响应时,将传递函数的分子、分母多项式的系数分别以s的降幂排列写为两个数组num、den。由于控制系统分子的阶次m一般小于其分母的阶次n,所以num中的数组元素与分子多项式系数之间自右向左逐次对齐,不足部分用零补齐,缺项系数也用零补上。1.用MATLAB求控制系统的瞬态响应1)阶跃响应求系统阶跃响应的指令有:step(num,den)时间向量t的范围由软件自动设定,阶跃响应曲线随即绘出step(num,den,t)时间向量t的范围可以由人
3、工给定(例如t=0:0.1:10)[y,x]=step(num,den)返回变量y为输出向量,x为状态向量在MATLAB程序中,先定义num,den数组,并调用上述指令,即可生成单位阶跃输入信号下的阶跃响应曲线图。考虑下列系统:该系统可以表示为两个数组,每一个数组由相应的多项式系数组成,并且以s的降幂排列。则MATLAB的调用语句:num=[0025];%定义分子多项式den=[1425];%定义分母多项式step(num,den)%调用阶跃响应函数求取单位阶跃响应曲线grid%画网格标度线xlabe
4、l(‘t/s’),ylabel(‘c(t)’)%给坐标轴加上说明title(‘Unit-stepRespinseofG(s)=25/(s^2+4s+25)’)%给图形加上标题名则该单位阶跃响应曲线如图2-1所示:图2-1二阶系统的单位阶跃响应图2-2定义时间范围的单位阶跃响应为了在图形屏幕上书写文本,可以用text命令在图上的任何位置加标注。例如:text(3.4,-0.06,’Y1’)和text(3.4,1.4,’Y2’)第一个语句告诉计算机,在坐标点x=3.4,y=-0.06上书写出’Y1’。类似
5、地,第二个语句告诉计算机,在坐标点x=3.4,y=1.4上书写出’Y2’。若要绘制系统t在指定时间(0-10s)内的响应曲线,则用以下语句:num=[0025];den=[1425];t=0:0.1:10;step(num,den,t)即可得到系统的单位阶跃响应曲线在0-10s间的部分,如图2-2所示。1)脉冲响应①求系统脉冲响应的指令有:impulse(num,den)时间向量t的范围由软件自动设定,阶跃响应曲线随即绘出impulse(num,den,t)时间向量t的范围可以由人工给定(例如t=0:
6、0.1:10)[y,x]=impulse(num,den)返回变量y为输出向量,x为状态向量[y,x,t]=impulse(num,den,t)向量t表示脉冲响应进行计算的时间例:试求下列系统的单位脉冲响应:在MATLAB中可表示为num=[001];den=[10.21];impulse(num,den)gridtitle(‘Unit-impulseResponseofG(s)=1/(s^2+0.2s+1)’)由此得到的单位脉冲响应曲线如图2-3所示:图2-3二阶系统的单位脉冲响应②求脉冲响应的另一
7、种方法应当指出,当初始条件为零时,G(s)的单位脉冲响应与sG(s)的单位阶跃响应相同。考虑在上例题中求系统的单位脉冲响应,因为对于单位脉冲输入量,R(s)=1所以因此,可以将G(s)的单位脉冲响应变换成sG(s)的单位阶跃响应。图2-4单位脉冲响应的另一种表示法向MATLAB输入下列num和den,给出阶跃响应命令,可以得到系统的单位脉冲响应曲线如图2-4所示。num=[010];den=[10.21];step(num,den)gridtitle(‘Unit-stepResponseofsG(s)
8、=s/(s^2+0.2s+1)’)1)斜坡响应MATLAB没有直接调用求系统斜坡响应的功能指令。在求取斜坡响应时,通常利用阶跃响应的指令。基于单位阶跃信号的拉氏变换为1/s,而单位斜坡信号的拉氏变换为1/s2。因此,当求系统G(s)的单位斜坡响应时,可以先用s除G(s),再利用阶跃响应命令,就能求出系统的斜坡响应。例如,试求下列闭环系统的单位斜坡响应。对于单位斜坡输入量,R(s)=1/s2,因此在MATLAB中输入以下命令,得到如图2-5所示的响应曲线: