欢迎来到天天文库
浏览记录
ID:15837714
大小:111.50 KB
页数:12页
时间:2018-08-06
《高考数学人教a版(理)一轮习【配套word版文档】:第二篇第2讲函数的单调性与最值》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2讲函数的单调性与最值A级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2013·长沙一模)下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是( ).A.y=x2B.y=
2、x
3、+1C.y=-lg
4、x
5、D.y=2
6、x
7、解析 对于C中函数,当x>0时,y=-lgx,故为(0,+∞)上的减函数,且y=-lg
8、x
9、为偶函数.答案 C2.(2011·辽宁)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( ).A.(-1,1)B
10、.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)解析 法一 由x∈R,f(-1)=2,f′(x)>2,可设f(x)=4x+6,则由4x+6>2x+4,得x>-1,选B.法二 设g(x)=f(x)-2x-4,则g(-1)=f(-1)-2×(-1)-4=0,g′(x)=f′(x)-2>0,g(x)在R上为增函数.由g(x)>0,即g(x)>g(-1).∴x>-1,选B.答案 B3.(2012·浙江)设a>0,b>0.( ).A.若2a+2a=2b+3b,则a>bB.若2a+2a=2b+3b,则a11、=2b-3b,则a>bD.若2a-2a=2b-3b,则ab成立,故A正确,B错误.当012、]B.[0,1)C.[1,+∞)D.[-1,0]解析 g(x)=如图所示,其递减区间是[0,1).故选B.答案 B二、填空题(每小题5分,共10分)5.设函数y=x2-2x,x∈[-2,a],若函数的最小值为g(a),则g(a)=________.解析 ∵函数y=x2-2x=(x-1)2-1,∴对称轴为直线x=1.当-2≤a<1时,函数在[-2,a]上单调递减,则当x=a时,ymin=a2-2a;当a≥1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,则当x=1时,ymin=-1.综上,g(a)=答案 6.13、奇函数f(x)(x∈R)满足:f(-4)=0,且在区间[0,3]与[3,+∞)上分别递减和递增,则不等式(x2-4)f(x)<0的解集为________.解析 当x2-4>0,即x<-2或x>2时,f(x)<0.由f(x)的图象知,x<-4或20,则-214、,且当x>0时,f(x)>1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)<3.(1)证明 设x10,∴f(Δx)>1,∴f(x2)=f(x1+Δx)=f(x1)+f(Δx)-1>f(x1),∴f(x)是R上的增函数.(2)解 f(4)=f(2)+f(2)-1=5,∴f(2)=3,∴f(3m2-m-2)<3=f(2).又由(1)的结论知f(x)是R上的增函数,∴3m2-m-2<2,∴-115、).(1)判断函数f(x)的奇偶性;(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.解 (1)当a=0时,f(x)=x2(x≠0)为偶函数;当a≠0时,f(-x)≠f(x),f(-x)≠-f(x),∴f(x)既不是奇函数也不是偶函数.(2)设x2>x1≥2,则f(x1)-f(x2)=x+-x-=[x1x2(x1+x2)-a],由x2>x1≥2,得x1x2(x1+x2)>16,x1-x2<0,x1x2>0.要使f(x)在区间[2,+∞)上是增函数,只需f(x1)-f(x2)<0,即x1x2(x1+x216、)-a>0恒成立,则a≤16.B级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)等于( ).A.2B.3C.6D.9解析 f(1)=f(0+1)=f(0)+f(1)+2×0×1=f(0)+f(1),∴
11、=2b-3b,则a>bD.若2a-2a=2b-3b,则ab成立,故A正确,B错误.当012、]B.[0,1)C.[1,+∞)D.[-1,0]解析 g(x)=如图所示,其递减区间是[0,1).故选B.答案 B二、填空题(每小题5分,共10分)5.设函数y=x2-2x,x∈[-2,a],若函数的最小值为g(a),则g(a)=________.解析 ∵函数y=x2-2x=(x-1)2-1,∴对称轴为直线x=1.当-2≤a<1时,函数在[-2,a]上单调递减,则当x=a时,ymin=a2-2a;当a≥1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,则当x=1时,ymin=-1.综上,g(a)=答案 6.13、奇函数f(x)(x∈R)满足:f(-4)=0,且在区间[0,3]与[3,+∞)上分别递减和递增,则不等式(x2-4)f(x)<0的解集为________.解析 当x2-4>0,即x<-2或x>2时,f(x)<0.由f(x)的图象知,x<-4或20,则-214、,且当x>0时,f(x)>1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)<3.(1)证明 设x10,∴f(Δx)>1,∴f(x2)=f(x1+Δx)=f(x1)+f(Δx)-1>f(x1),∴f(x)是R上的增函数.(2)解 f(4)=f(2)+f(2)-1=5,∴f(2)=3,∴f(3m2-m-2)<3=f(2).又由(1)的结论知f(x)是R上的增函数,∴3m2-m-2<2,∴-115、).(1)判断函数f(x)的奇偶性;(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.解 (1)当a=0时,f(x)=x2(x≠0)为偶函数;当a≠0时,f(-x)≠f(x),f(-x)≠-f(x),∴f(x)既不是奇函数也不是偶函数.(2)设x2>x1≥2,则f(x1)-f(x2)=x+-x-=[x1x2(x1+x2)-a],由x2>x1≥2,得x1x2(x1+x2)>16,x1-x2<0,x1x2>0.要使f(x)在区间[2,+∞)上是增函数,只需f(x1)-f(x2)<0,即x1x2(x1+x216、)-a>0恒成立,则a≤16.B级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)等于( ).A.2B.3C.6D.9解析 f(1)=f(0+1)=f(0)+f(1)+2×0×1=f(0)+f(1),∴
12、]B.[0,1)C.[1,+∞)D.[-1,0]解析 g(x)=如图所示,其递减区间是[0,1).故选B.答案 B二、填空题(每小题5分,共10分)5.设函数y=x2-2x,x∈[-2,a],若函数的最小值为g(a),则g(a)=________.解析 ∵函数y=x2-2x=(x-1)2-1,∴对称轴为直线x=1.当-2≤a<1时,函数在[-2,a]上单调递减,则当x=a时,ymin=a2-2a;当a≥1时,函数在[-2,1]上单调递减,在[1,a]上单调递增,则当x=1时,ymin=-1.综上,g(a)=答案 6.
13、奇函数f(x)(x∈R)满足:f(-4)=0,且在区间[0,3]与[3,+∞)上分别递减和递增,则不等式(x2-4)f(x)<0的解集为________.解析 当x2-4>0,即x<-2或x>2时,f(x)<0.由f(x)的图象知,x<-4或20,则-214、,且当x>0时,f(x)>1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)<3.(1)证明 设x10,∴f(Δx)>1,∴f(x2)=f(x1+Δx)=f(x1)+f(Δx)-1>f(x1),∴f(x)是R上的增函数.(2)解 f(4)=f(2)+f(2)-1=5,∴f(2)=3,∴f(3m2-m-2)<3=f(2).又由(1)的结论知f(x)是R上的增函数,∴3m2-m-2<2,∴-115、).(1)判断函数f(x)的奇偶性;(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.解 (1)当a=0时,f(x)=x2(x≠0)为偶函数;当a≠0时,f(-x)≠f(x),f(-x)≠-f(x),∴f(x)既不是奇函数也不是偶函数.(2)设x2>x1≥2,则f(x1)-f(x2)=x+-x-=[x1x2(x1+x2)-a],由x2>x1≥2,得x1x2(x1+x2)>16,x1-x2<0,x1x2>0.要使f(x)在区间[2,+∞)上是增函数,只需f(x1)-f(x2)<0,即x1x2(x1+x216、)-a>0恒成立,则a≤16.B级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)等于( ).A.2B.3C.6D.9解析 f(1)=f(0+1)=f(0)+f(1)+2×0×1=f(0)+f(1),∴
14、,且当x>0时,f(x)>1.(1)求证:f(x)是R上的增函数;(2)若f(4)=5,解不等式f(3m2-m-2)<3.(1)证明 设x10,∴f(Δx)>1,∴f(x2)=f(x1+Δx)=f(x1)+f(Δx)-1>f(x1),∴f(x)是R上的增函数.(2)解 f(4)=f(2)+f(2)-1=5,∴f(2)=3,∴f(3m2-m-2)<3=f(2).又由(1)的结论知f(x)是R上的增函数,∴3m2-m-2<2,∴-115、).(1)判断函数f(x)的奇偶性;(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.解 (1)当a=0时,f(x)=x2(x≠0)为偶函数;当a≠0时,f(-x)≠f(x),f(-x)≠-f(x),∴f(x)既不是奇函数也不是偶函数.(2)设x2>x1≥2,则f(x1)-f(x2)=x+-x-=[x1x2(x1+x2)-a],由x2>x1≥2,得x1x2(x1+x2)>16,x1-x2<0,x1x2>0.要使f(x)在区间[2,+∞)上是增函数,只需f(x1)-f(x2)<0,即x1x2(x1+x216、)-a>0恒成立,则a≤16.B级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)等于( ).A.2B.3C.6D.9解析 f(1)=f(0+1)=f(0)+f(1)+2×0×1=f(0)+f(1),∴
15、).(1)判断函数f(x)的奇偶性;(2)若f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.解 (1)当a=0时,f(x)=x2(x≠0)为偶函数;当a≠0时,f(-x)≠f(x),f(-x)≠-f(x),∴f(x)既不是奇函数也不是偶函数.(2)设x2>x1≥2,则f(x1)-f(x2)=x+-x-=[x1x2(x1+x2)-a],由x2>x1≥2,得x1x2(x1+x2)>16,x1-x2<0,x1x2>0.要使f(x)在区间[2,+∞)上是增函数,只需f(x1)-f(x2)<0,即x1x2(x1+x2
16、)-a>0恒成立,则a≤16.B级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)等于( ).A.2B.3C.6D.9解析 f(1)=f(0+1)=f(0)+f(1)+2×0×1=f(0)+f(1),∴
此文档下载收益归作者所有