欢迎来到天天文库
浏览记录
ID:15705644
大小:121.50 KB
页数:8页
时间:2018-08-05
《运筹学试卷及答案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、运筹学试题(代码:8054)一、填空题(本大题共8小题,每空2分,共20分)1.线性规划闯题中,如果在约束条件中出现等式约束,我们通常用增加___的方法来产生初始可行基。2.线性规划模型有三种参数,其名称分别为价值系数、___和___。3.原问题的第1个约束方程是“=”型,则对偶问题相应的变量是___变量。4.求最小生成树问题,常用的方法有:避圈法和___。5.排队模型M/M/2中的M,M,2分别表示到达时间为___分布,服务时间服从负指数分布和服务台数为2。6.如果有两个以上的决策自然条件,但决策人无法估计各自然状态出现
2、的概率,那么这种决策类型称为____型决策。7.在风险型决策问题中,我们一般采用___来反映每个人对待风险的态度。8.目标规划总是求目标函数的___信,且目标函数中没有线性规划中的价值系数,而是在各偏差变量前加上级别不同的____。二、单项选择题(本大题共l0小题,每小题3分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。多选无分。9.使用人工变量法求解极大化线性规划问题时,当所有的检验数在基变量中仍含有非零的人工变量,表明该线性规划问题【】A.有唯一的最优解B.有无穷多最优解
3、C.为无界解D.无可行解10.对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中【】A.b列元素不小于零B.检验数都大于零C.检验数都不小于零D.检验数都不大于零11.已知某个含10个结点的树图,其中9个结点的次为1,1,3,1,1,1,3,1,3,则另一个结点的次为【】A.3B.2C.1D.以上三种情况均有可能12.如果要使目标规划实际实现值不超过目标值。则相应的偏离变量应满足【】13.在运输方案中出现退化现象,是指数字格的数目【】A.等于m+nB.等于m+n-1C.小于m+n-1D.大于m+n-114.关于矩阵
4、对策,下列说法错误的是【】A.矩阵对策的解可以不是唯一的C.矩阵对策中,当局势达到均衡时,任何一方单方面改变自己的策略,都将意味着自己更少的赢得和更大的损失D.矩阵对策的对策值,相当于进行若干次对策后,局中人I的平均赢得或局中人Ⅱ的平均损失值【】A.28.—lC.—3D.116.关于线性规划的原问题和对偶问题,下列说法正确的是【】A.若原问题为元界解,则对偶问题也为无界解B.若原问题无可行解,其对偶问题具有无界解或无可行解c.若原问题存在可行解,其对偶问题必存在可行解D.若原问题存在可行解,其对偶问题无可行解17.下列叙述
5、不属于解决风险决策问题的基本原则的是【】A.最大可能原则B.渴望水平原则C.最大最小原则D.期望值最大原则18.下列说法正确的是【】A.线性规划问题的基本解对应可行域的顶点也必是该问题的可行解D.单纯形法解标准的线性规划问题时,按最小比值原则确定换出基变量是为了保证迭代计算后的解仍为基本可行解三、多项选择题(本大题共5小题,每小题2分,共l0分)在每小题列出的四个备选项中至少有两个是符合题目要求的,请将其代码填写在题后的括号内。多选、少选均无分。19.线性规划问题的标准型最本质的特点是【】A.目标要求是极小化B.变量可以取
6、任意值C.变量和右端常数要求非负D.约束条件一定是等式形式20.下列方法中属于解决确定型决策方法的有【】A.线性规划B.动态规划C.盈亏分析D.企业作业计划21.关于矩阵对策,下列说法正确的是【】A.矩阵对策中,如果最优解要求一个局中人采取纯策略,则另一局中人也必须采取纯策略B.在二人有限零和对策的任一局势中,两个局中人的得失之和为零C.矩阵对策的对策值是唯一的D.如果矩阵对策存在最优纯策略意义下的解,则决策问题中必存在一个鞍点22.关于运输问题,下列说法正确的是【】A.在其数学模型中,有m+n—1个约束方程B.用最小费用
7、法求得的初始解比用西北角法得到的初始解在一般情况下更靠近最优解C.对任何一个运输问题,一定存在最优解D.对于产销不平衡的运输问题。同样也可以用表上作业法求解23.关于网络图,下列说法错误的是【】A.总时差为0的各项作业所组成的路线即为关键路线B.以同一结点为结束事件的各项作业的最迟结束时间相同C.以同一结点为开始事件的各项作业的最早开始时间相同D.网络图中的任一结点都具有某项作业的开始和他项作业结束的双重标志属性四、计算题(本大题共5小题,每小题8分,共40分)利用对偶理论证明其目标函数值无界。25.试用大M法解下列线性规
8、划问题。26.福安商场是个中型的百货商场,它对售货人员的需求经过统计分析如下表所示,为了保证售货人员充分休息,售货人员每周工作五天,休息两天,并要求休息的两天是连续的,问该如何安排售货人员的休息,既满足了工作需要,又使配备的售货人员的人数最少,请列出此问题的数学模型。时间所需售货人员数时间所需售货人员数
此文档下载收益归作者所有