欢迎来到天天文库
浏览记录
ID:15548146
大小:139.50 KB
页数:9页
时间:2018-08-04
《椭圆教学设计(人教版)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、《椭圆及其标准方程》教学设计龙城高级中学胡宇娟(一)指导思想与理论依据1、本节课的设计力图体现“教师为主导,学生为主体”的教学思想。在教学的过程中始终本着“教师是课堂教学的组织者、引导者、合作者”的原则,让学生通过实验、观察、思考、分析、推理、交流、合作、反思等过程建构新知识,并初步学会从数学的角度去观察事物和思考问题,产生学习数学的浓厚兴趣。2、在“椭圆的标准方程”的引入与推导中,遵循学生的认识规律,运用“实验——猜想——推导——应用”的思想方法,逐步由感性到理性地认识定理,揭示知识的发生、发
2、展过程;遵循现代教育理论中的“要把学生学习知识当作认识事物的过程来进行教学”的观点。3、数学学习的核心是思考,离开思考就没有真正的数学。针对这节课的内容:教师提问;学生操作、观察、思考、讨论;教师再演示、点评,最大限度地调动学生积极参与教学活动。在教学重难点处适当放慢节奏,给学生充分的时间与空间进行思考与讨论,教师适时给予适当的思维点拨,必要的可进行大面积提问,让学生做课堂的主人,充分发表自己的观点,交流、汇集思想。这样既有利于化解难点、突出重点,也有利于充分发挥学生的主体作用,使课堂气氛更加活
3、跃,让学生在生生互动、师生互动中掌握知识,提高解决问题的能力。另外通过学法指导,引导学生思维向更深更广发展,以培养学生良好的思维品质,并为以后进一步学习椭圆的几何性质及双曲线和抛物线作好辅垫。(二)教学背景分析A、学情分析1、能力分析①学生已初步掌握用坐标法研究直线和圆的方程;②对含有两个根式方程的化简能力薄弱。2、认知分析①学生已初步熟悉求曲线方程的基本步骤;共8页第1页②学生已经掌握直线和圆的方程及圆锥曲线的概念,对曲线的方程的概念有一定的了解;③学生已经初步掌握研究直线和圆的基本方法。3、
4、情感分析学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。B、教材分析在教材处理上,根据椭圆定义的特点,结合学生的认识能力和思维习惯在概念的理解上,先突出“和”,在此基础上再完善“常数”取值范围.在标准方程的推导上,并不是直接给出教材中的“建系”方式,而是让学生自主地“建系”,通过所得方程的比较,得到标准方程,从中去体会探索的乐趣和数学中的对称美和简洁美.基于以上分析,我将本课的教学重点、难点确定为:①重点:感受建立曲线方程的基本过程,掌握椭圆的标准方程及其推导方法;②难点:椭圆的标准方程
5、的推导,辨析椭圆标准方程。C、教学分析教学方法:主要采用探究性教学法和启发式教学法。以启发、引导为主,采用设疑的形式,即教师通过问题诱导→启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力。逐步让学生进行探究性的学习。探究性学习充分利用了青少年学生富有创造性和好奇心,敢想敢为,对新事物具有浓厚的兴趣的特点。让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题。教具准备:多媒体课件、绘图板、细绳。(一)本
6、节课教学目标设计A、知识与技能目标1、建立直角坐标系,根据椭圆的定义建立椭圆的标准方程;2、能根据已知条件求椭圆的标准方程;3、进一步感受曲线方程的概念,了解建立曲线方程的基本方法,体会数形共8页第2页结合的数学思想。B、过程与方法目标1、让学生感知数学知识与实际生活的密切联系,培养解决实际问题的能力,2、培养学生的观察能力、归纳能力、探索发现能力,3、提高运用坐标法解决几何问题的能力及运算能力。C、情感态度与价值观目标1、亲身经历椭圆标准方程的获得过程,感受数学美的熏陶,2、通过主动探索,合作
7、交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨,3、通过经历椭圆方程的化简,增强学生战胜困难的意志品质和契而不舍的钻研精神,养成学生扎实严谨的科学态度,形成学习数学知识的积极态度。(一)教学过程与教学资源设计教学环节教学内容和形式设计意图启发诱导推陈出新1、复习旧知识:圆的定义是什么?圆的标准方程是什么形式?如何推导圆的标准方程呢?2、提出新问题:椭圆是怎么画出来的?椭圆的定义是什么?它的标准方程又是什么形式?3、引出课题:椭圆及其标准方程。激活学生已有的认知结构,为本课推导椭圆标准方程
8、提供了方法与策略.引出课题。小组合作形成概念1、学生操作:小组合作固定一条细绳的两端,用笔尖将细绳拉紧并运动,在绘图板上得到了怎样的图形?2、学生、师生交流:如果调整细绳两端的相对位置,细绳的长度不变,猜想椭圆会发生怎样的变化?(教师巡视,参与交流)在动手过程中,培养学生观察、辨析、归纳问题的能力.共8页第3页形成概念深化概念3、思考(给学生足够得时间):改变细绳两端的距离,使其与绳长相等及小于绳长,画出的图形还是椭圆吗?还能画出图形吗?讨论得三个结论:椭圆线段不存在4、归纳:学生尝试归纳椭圆的
此文档下载收益归作者所有