我国压水堆核电站主要设备及原理

我国压水堆核电站主要设备及原理

ID:1554724

大小:958.50 KB

页数:9页

时间:2017-11-12

我国压水堆核电站主要设备及原理_第1页
我国压水堆核电站主要设备及原理_第2页
我国压水堆核电站主要设备及原理_第3页
我国压水堆核电站主要设备及原理_第4页
我国压水堆核电站主要设备及原理_第5页
资源描述:

《我国压水堆核电站主要设备及原理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、压水堆核电站主要设备及原理压水堆核电站主要设备典型压水反应堆的核心是一个圆柱形高压反应容器。容器内设有实现核裂变反应堆的堆芯和堆芯支承结构,顶部装有控制裂变反应的控制棒驱动机构,随时调节和控制堆芯中控制棒的插入深度。堆芯是原子核反应堆的心脏,链式裂变反应就在这里进行。它由核燃料组件、控制棒组件和既作中子慢化剂又作为冷却剂的水组成。堆内铀-235核裂变时释放出来的核能迅速转化为热量,热量通过热传导传递到燃料棒表面,然后,通过对流放热,将热量传递给快速流动的冷却水(冷却剂),使水温升高,从而由冷却水将热量带出反应堆,再通过一套动力回路将热能

2、转变为电能。压水堆核电站原理:由反应堆释放的核能通过一套动力装置将核能转变为蒸汽的动能,进而转变为电能。该动力装置由一回路系统,二回路系统及其他辅助系统和设备组成。原子核反应堆内产生的核能,使堆芯发热,高温高压的冷却水在主冷却泵驱动下,流进反应堆堆芯,冷却水温度升高,将堆芯的热量带至蒸汽发生器。蒸汽发生器一次侧再把热量传递给管子外面的二回路循环系统的给水,使给水加热变成高压蒸汽,放热后的一次侧冷却水又重新流回堆芯。这样不断地循环往复,构成一个密闭的循环回路。一回路系统主要设备除反应堆外,还有蒸汽发生器、冷却剂主泵机组、稳压器及主管道等。

3、一回路示意图稳压器结构图冷却剂主泵结构图二回路中蒸汽发生器的给水吸收了一回路传来的热量变成高压蒸汽,然后推动汽轮机,带动发电机发电。做功后的乏汽在冷凝器内冷却而凝结成水,再由给水泵送至加热器,加热后重新返回蒸汽发生器,再变成高压蒸汽推动汽轮发电机作功发电。这样构成第二个密闭循环回路。二回路系统由蒸汽发生器二次侧、汽轮机、发电机、冷凝器、凝结水泵、给水泵、给水加热器和中间汽水分离再热器等设备组成。汽轮发电机机组是二回路系统的主要设备。它由饱和汽轮机、发电机、冷凝器和中间汽水分离加热器组成。汽轮机是单轴、四缸六排汽、冷凝式饱和蒸汽轮机。在汽

4、轮机高压缸和低压缸之间,设有两个汽水分离再热器,对蒸汽进行中间除湿和加热。核电厂二回路的流程原理与火力发电厂的流程原理基本相同,只是由核岛部分的蒸汽发生器代替了火力发电厂的蒸汽锅炉。同火力发电厂使用的热蒸汽相比,蒸汽发生器出口的蒸汽为饱和蒸汽,热力参数低,作功能力差,因此核电汽轮机的体积比火电汽轮机的体积大,在本体疏水和蒸汽除湿等方面都要采取相应的必要措施,以防止湿蒸汽的冲蚀。为了降低冲蚀影响,采用半转速汽轮机较为有利。为保证反应堆的安全运行,压水堆不允许冷却水沸腾。因此,由主循环泵5送入反应堆2的冷却剂(轻水)的压力高达12~16MP

5、a。在此情况下,冷却剂(轻水)的温度即使达320℃也不会汽化。冷却剂把核燃料放出的热能带出反应堆,并进入蒸汽发生器4,通过数以千计的传热管,把热量传给管外的二回路水(压力通常比一回路低8~11MPa),使水沸腾产生蒸汽;从蒸汽发生器出来的饱和蒸汽或微过热蒸汽进入汽轮机高压缸6膨胀作功,高压缸排汽进入汽水分离再热器7,分离出来的饱和蒸汽被再热后送入对称分流的低压缸8继续作功。作过功的乏汽在凝汽器10中凝结成水,经凝结水泵11、凝结水精处理装置12、凝升泵13、低压回热加热器14、除氧器15、给水泵16和高压回热器加热17后,重新送回蒸汽发

6、生器。冷却剂流经蒸汽发生器后,再由主泵送入反应堆而形成循环,不断地把反应堆中的热量带出并转换产生蒸汽。压水堆核电站主要设备

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。