导数第四课时:函数的最大与最小值+函数极限

导数第四课时:函数的最大与最小值+函数极限

ID:15475752

大小:161.05 KB

页数:4页

时间:2018-08-03

导数第四课时:函数的最大与最小值+函数极限_第1页
导数第四课时:函数的最大与最小值+函数极限_第2页
导数第四课时:函数的最大与最小值+函数极限_第3页
导数第四课时:函数的最大与最小值+函数极限_第4页
资源描述:

《导数第四课时:函数的最大与最小值+函数极限》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、函数的最大与最小值教学目标:1、使学生掌握可导函数在闭区间上所有点(包括端点)处的函数中的最大(或最小)值;     2、使学生掌握用导数求函数的极值及最值的方法教学重点:掌握用导数求函数的极值及最值的方法教学难点:提高“用导数求函数的极值及最值”的应用能力一、复习:1、;2、3、求y=x3—27x的极值。二、新课yxX2oaX3bx1在某些问题中,往往关心的是函数在一个定义区间上,哪个值最大,哪个值最小观察下面一个定义在区间上的函数的图象发现图中____________是极小值,_________是极大值,在区间上的函数的最大值是______,最小值是_______

2、在区间上求函数的最大值与最小值的步骤:1、函数在内有导数;2、求函数在内的极值3、将函数在内的极值与比较,其中最大的一个为最大值,最小的一个为最小值三、例1、求函数在区间上的最大值与最小值。例2 用边长为60CM的正方形铁皮做一个无盖的水箱,先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成,问水箱底边的长取多少时,水箱容积最大,最大容积是多少?四、小结:1、闭区间上的连续函数一定有最值;开区间内的可导函数不一定有最值,若有唯一的极值,则此极值必是函数的最值。2、函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个。

3、3、在解决实际应用问题中,关键在于建立数学模型和目标函数;如果函数在区间内只有一个极值点,那么根据实际意义判断是最大值还是最小值即可,不必再与端点的函数值进行比较。给出下面四个命题中正确的命题有____________(1)函数在区间上的最大值为10,最小值为-(2)函数(2<X<4)上的最大值为17,最小值为1 (3)函数(-3<X<3)上的最大值为16 , 最小值为-16(4)函数(-2<X<2)上 无 最大值 也无 最小值。函数极限的运算法则教学目标:掌握函数极限的运算法则,并会求简单的函数的极限教学重点:运用函数极限的运算法则求极限教学难点:函数极限法则的运用

4、二、新课讲授对于函数极限有如下的运算法则:如果,那么也就是说,如果两个函数都有极限,那么这两个函数的和、差、积、商组成的函数极限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0).说明:当C是常数,n是正整数时,这些法则对于的情况仍然适用.例1求例2求例3求例4求总结:四课堂练习(利用函数的极限法则求下列函数极限)(1);(2)(3);(4)(5)(6)(7)(8)五小结1有限个函数的和(或积)的极限等于这些函数的和(或积);2函数的运算法则成立的前提条件是函数的极限存在,在进行极限运算时,要特别注意这一点.3两个(或几个)函数的极限至少有一个

5、不存在时,他们的和、差、积、商的极限不一定不存在.4在求几个函数的和(或积)的极限时,一般要化简,再求极限.练习:1.求函数f(x)=5x+2的值域.2.设

6、值;(2)求证:f(1)≥2.6.已知函数f(x)=4x3+ax2+bx+5的图象在x=1处的切线方程为y=-12x.(1)求函数f(x)的解析式;(2)求函数f(x)在[-3,1]上的最值.7.已知函数,(1)当时,判断在定义域上的单调性;(2)若在上的最小值为,求的值;(3)若在上恒成立,求的取值范围.求下列极限(1)(2)(3)(4)(5)(6)(7)(8)(9)(13)(14)(15)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。