中考数学专题复习 几何探究题

中考数学专题复习 几何探究题

ID:15464215

大小:561.50 KB

页数:12页

时间:2018-08-03

中考数学专题复习 几何探究题_第1页
中考数学专题复习 几何探究题_第2页
中考数学专题复习 几何探究题_第3页
中考数学专题复习 几何探究题_第4页
中考数学专题复习 几何探究题_第5页
资源描述:

《中考数学专题复习 几何探究题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、专题复习几何探究问题一、结论探究【例1】(2009随州)如图①,已知△ABC是等腰直角三角形,∠BAC=900,点D是BC中点,作正方形DEFG,使点A、C分别在DG和DE上,连接AE、BG(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论(2)将正方形DEFG绕点D逆时针旋转一定角度后(旋转角大于00,小于或等于3600),如图②,通过观察和测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由。(3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值。变式练习:已知

2、正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)直接写出线段EG与CG的数量关系;(2)将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?(不要求证明)FBACE图3DFBADCEG图2FBADCEG图1二、条件探究【例2】(2010中山)已知两个全等的直角三角形纸片AB

3、C、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G,∠C=∠EFB=900,∠E=∠ABC=300,AB=DE=4(1)求证:△EGB是等腰三角形(2)若纸片DEF不动,问△ABC绕点F旋转最小度时,四边形ACDE成为以ED为底的梯形(如图(2)),求此梯形的高。【例3】(2010眉山)如图,Rt△AB¢C¢是由Rt△ABC绕点A顺时针旋转得到的,连结CC¢交斜边于点E,CC¢的延长线交BB¢于点F.(1)证明:△ACE∽△FBE;(2)设∠ABC=,∠CAC¢=,试探索、满足什么关系时,△ACE与△FB

4、E是全等三角形,并说明理由.三、类比探究【例4】(2010河南)(1)操作发现:如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在举行ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决:保持(1)中的条件不变,若DC=2DF,求的值;(3)类比探求:保持(1)中条件不变,若DC=nDF,求的值.【例5】(2010连云港)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.如,平行四边形的一条对线所在的直线就是平

5、行四边形的一条面积等分线.(1)三角形的中线、高线、角平分线分别所在的直线一定是三角形的面积等分线的有________;(2)如图1,梯形ABCD中,AB∥DC,如果延长DC到E,使CE=AB,连接AE,那么有S梯形ABCD=S△ABE.请你给出这个结论成立的理由,并过点A作出梯形ABCD的面积等分线(不写作法,保留作图痕迹);(3)如图,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否作出四边形ABCD的面积等分线?若能,请画出面积等分线,并给出证明;若不能,说明理由.ADBADEBADCFEBADDQF

6、EBAD图1ADBADCFEBADDQFEBAD图2【例6】(2010无锡)(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.证明:在边AB上截取AE=MC,连ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°—∠AMN—∠AMB=180°—∠B—∠AMB=∠MAB=∠MAE.(下面请你完成余下的证明过程)(2)若将

7、(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.(3)若将(1)中的“正方形ABCD”改为“正边形ABCD…X”,请你作出猜想:当∠AMN=°时,结论AM=MN仍然成立.(直接写出答案,不需要证明)图2图1【例7】请阅读下列材料问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=,PC=1.求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2)

8、.连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′C=150°,而∠BPC=∠AP′C=150°.进而求出等边△ABC的边长为.问题得到解决.请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。