椭球面上的常用坐标系及其相互关系

椭球面上的常用坐标系及其相互关系

ID:15441497

大小:390.50 KB

页数:6页

时间:2018-08-03

椭球面上的常用坐标系及其相互关系_第1页
椭球面上的常用坐标系及其相互关系_第2页
椭球面上的常用坐标系及其相互关系_第3页
椭球面上的常用坐标系及其相互关系_第4页
椭球面上的常用坐标系及其相互关系_第5页
资源描述:

《椭球面上的常用坐标系及其相互关系》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、§6.2椭球面上的常用坐标系及其相互关系6.2.1大地坐标系 点的子午面NPS与起始子午面NGS所构成的二面角,叫做点的大地经度,由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0o~180°)。点的法线与赤道面的夹角,叫做点的大地纬度。由赤道面起算,向北为正,叫北纬(0°~90°);向南为负,叫南纬(0°~90°)。大地坐标系是用大地经度L、大地纬度B和大地高H表示地面点位的。过地面点P的子午面与起始子午面间的夹角叫P点的大地经度。由起始子午面起算,向东为正,叫东经(0°~180°),向西为负,叫西经(0°

2、~-180°)。过P点的椭球法线与赤道面的夹角叫P点的大地纬度。由赤道面起算,向北为正,叫北纬(0°~90°),向南为负,叫南纬(0°~-90°)。从地面点P沿椭球法线到椭球面的距离叫大地高。大地坐标坐标系中,点的位置用,表示。如果点不在椭球面上,表示点的位置除,外,还要附加另一参数——大地高,它同正常高及正高有如下关系6.2.2空间直角坐标系以椭球体中心为原点,起始子午面与赤道面交线为轴,在赤道面上与轴正交的方向为轴,椭球体的旋转轴为轴,构成右手坐标系-,在该坐标系中,点的位置用表示。地球空间直角坐标系的坐标原点位于地球质心(地心

3、坐标系)或参考椭球中心(参心坐标系),z轴指向地球北极,x轴指向起始子午面与地球赤道的交点,y轴垂直于XOZ面并构成右手坐标系。6.2.3子午面直角坐标系设点的大地经度为,在过点的子午面上,以子午圈椭圆中心为原点,建立6平面直角坐标系。在该坐标系中,点的位置用,表示。6.2.4大地极坐标系为椭球体面上任意一点,为过点的子午线,为连结的大地线长,为大地线在点的方位角。以为极点,为极轴,为极半径,为极角,这样就构成大地极坐标系。在该坐标系中点的位置用,表示。椭球面上点的极坐标(,)与大地坐标(,)可以互相换算,这种换算叫做大地主题解算。

4、6.2.5各坐标系间的关系椭球面上的点位可在各种坐标系中表示,由于所用坐标系不同,表现出来的坐标值也不同。1.子午面直角坐标系同大地坐标系的关系过点作法线,它与轴之夹角为,过点作子午圈的切线,它与轴的夹角为(90°+)。子午面直角坐标同大地纬度的关系式如下:2.空间直角坐标系同子午面直角坐标系的关系空间直角坐标系中的相当于子午平面直角坐标系中的,前者的相当于后者的,并且二者的经度相同。3.空间直角坐标系同大地坐标系的关系同一地面点在地球空间直角坐标系中的坐标和在大地坐标系中的坐标可用如下两组公式转换。6式中:e——子午椭圆第一偏心率

5、,可由长短半径按式算得。N——法线长度,可由式算得。§6.3几种主要的椭球公式过椭球面上任意一点可作一条垂直于椭球面的法线,包含这条法线的平面叫做法截面,法截面同椭球面交线叫法截线(或法截弧)。包含椭球面一点的法线,可作无数多个法截面,相应有无数多个法截线。椭球面上的法截线曲率半径不同于球面上的法截线曲率半径都等于圆球的半径,而是不同方向的法截弧的曲率半径都不相同。6.3.1子午圈曲率半径子午椭圆的一部分上取一微分弧长,相应地有坐标增量,点是微分弧的曲率中心,于是线段及便是子午圈曲率半径。任意平面曲线的曲率半径的定义公式为:子午圈曲

6、率半径公式为:或与纬度有关.它随的增大而增大,变化规律如下表所示:说明在赤道上,小于赤道半径此间随纬度的增大而增大在极点上,等于极点曲率半径66.3.2卯酉圈曲率半径过椭球面上一点的法线,可作无限个法截面,其中一个与该点子午面相垂直的法截面同椭球面相截形成的闭合的圈称为卯酉圈。在图中即为过点的卯酉圈。卯酉圈的曲率半径用表示。为了推导的表达计算式,过点作以为中心的平行圈的切线,该切线位于垂直于子午面的平行圈平面内。因卯酉圈也垂直于子午面,故也是卯酉圈在点处的切线。即垂直于。所以是平行圈及卯酉圈在点处的公切线。卯酉圈曲率半径可用下列两式

7、表示:6.3.3任意法截弧的曲率半径子午法截弧是南北方向,其方位角为0°或180°。卯酉法截弧是东西方向,其方位角为90°或270°。现在来讨论方位角为的任意法截弧的曲率半径的计算公式。任意方向的法截弧的曲率半径的计算公式如下:(7-87)6.3.4平均曲率半径在实际际工程应用中,根据测量工作的精度要求,在一定范围内,把椭球面当成具有适当半径的球面。取过地面某点的所有方向的平均值来作为这个球体的半径是合适的。这个球面的半径——平均曲率半径R:或因此,椭球面上任意一点的平均曲率半径等于该点子午圈曲率半径和卯酉圈曲率半径的几何平均值。6

8、.3.5子午线弧长计算公式6子午椭圆的一半,它的端点与极点相重合;而赤道又把子午线分成对称的两部分。如图所示,取子午线上某微分弧,令点纬度为,点纬度为,点的子午圈曲率半径为,于是有:从赤道开始到任意纬度的平行圈之间的弧长可由下列积分求

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。