[理学]离散数学答案精品文档

[理学]离散数学答案精品文档

ID:15410348

大小:649.00 KB

页数:39页

时间:2018-08-03

[理学]离散数学答案精品文档_第1页
[理学]离散数学答案精品文档_第2页
[理学]离散数学答案精品文档_第3页
[理学]离散数学答案精品文档_第4页
[理学]离散数学答案精品文档_第5页
资源描述:

《[理学]离散数学答案精品文档》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第一章集合论基础1.设S={2,a,{3},4},R={{a},3,4,1},指出下面的写法哪些是对的,哪些是错的?{a}ÎS,{a}ÎR,{a,4,{3}}ÍS,{{a},1,3,4}ÌR,R=S,{a}ÍS,{a}ÍR,fÍR,fÍ{{a}}ÍRÍE,{f}ÍS,fÎR,fÍ{{3},4}。解:{a}ÎSO,{a}ÎRP,{a,4,{3}}ÍSP,{{a},1,3,4}ÌRO,R=SO,{a}ÍSP,{a}ÍRO,fÍRP,fÍ{{a}}ÍRÍEP,{f}ÍSO,fÎRO,fÍ{{3},4}P2写出下面

2、集合的幂集合{a,{b}},{1,f},{X,Y,Z}解:设A={a,{b}},则r(A)={f,{a},{{b}},{a,{b}}};设B={1,f},则r(B)={f,{1},{f},{1,f}};设C={X,Y,Z},则r(C)={f,{X},{Y},{Z},{X,Y},{X,Z},{Y,Z},{X,Y,Z}};3对任意集合A,B,证明:(1)AÍB当且仅当r(A)Ír(B);(2)r(A)Èr(B)Ír(AÈB);(3)r(A)Çr(B)=r(AÇB);(4)r(A-B)Í(r(A)-r(B))È{

3、f}。举例说明:r(A)∪r(B)≠r(A∪B)证明:(1)证明:必要性,任取xÎr(A),则xÍA。由于AÍB,故xÍB,从而xÎr(B),于是r(A)Ír(B)。充分性,任取xÎA,知{x}ÍA,于是有{x}Îr(A)。由于r(A)Ír(B),故{x}Îr(B),由此知xÎB,也就是AÍB。(2)证明:任取XÎr(A)∪r(B),则XÎr(A)或XÎr(B)∴XÍA或XÍB∴XÍ(A∪B)∴XÎr(A∪B)所以r(A)∪r(B)Ír(A∪B)(3)证明:先证r(A)∩r(B)Ír(A∩B)任取XÎr(A

4、)∩r(B),则XÎr(A)且XÎr(B)∴XÍA且XÍB∴XÍA∩B∴XÎr(A∩B)所以r(A)∩r(B)Ír(A∩B)再证r(A∩B)Ír(A)∩r(B)任取YÎr(A∩B),则YÍA∩B∴YÍA且YÍB∴YÎr(A)且YÎr(B)∴YÎr(A)∩r(B)所以r(A∩B)Ír(A)∩r(B)故r(A)∩r(B)=r(A∩B)得证。举例:A={1},B={a}则r(A)={f,{1}},r(B)={f,{a}}r(A)∪r(B)={f,{1},{a}}A∪B={1,a}r(A∪B)={f,{1},{a}

5、,{1,a}}可见{1,a}Îr(A∪B),{1,a}Ïr(A)∪r(B)所以r(A)∪r(B)≠r(A∪B)(4)对任意的集合x,若x=f,则xÎr(A-B)且xÎ(r(A)-r(B))∪{f}。若x¹f,则xÎr(A-B)当且仅当xÍ(A-B)当且仅当xÍAÙx⊈B当且仅当xÎr(A)ÙxÏr(B)当且仅当xÎ(r(A)-r(B))。综上所述,可知r(A-B)Í(r(A)-r(B))È{f}。4.设A,B,C为任意三个集合,下列各式对否?并证明你的结论。(1)若AÎB且BÍC,则AÎC;(2)若AÎB且

6、BÍC,则AÍC;(3)若AÍB且BÎC,则AÎC;(4)若AÍB且BÎC,则AÍC。解:(1)正确;(2)不正确,举一个反例即可;(3)不正确,举一个反例即可;(4)不正确,举一个反例即可。5.对24名科技人员进行掌握外语情况的调查,其统计资料如下:会英、日、德、法语的人数分别是13,5,10和9。其中同时会英语、日语的人数为2。同时会说英语、德语或同时会说英语、法语,或同时会说德语、法语两种语言的人数均为4。会说日语的人既不会说法语也不会说德语。试求只会说一种语言的人数各为多少?同时会说英、德、法语的人

7、数为多少?解:设A,B,C,D分别代表会说英、日、德、法语人的集合。由已知条件知:

8、A

9、=13,

10、B

11、=5,

12、C

13、=10,

14、D

15、=9,

16、AÇB

17、=2,而

18、AÇC

19、=

20、AÇD

21、=

22、CÇD

23、=4,

24、BÇC

25、=

26、BÇD

27、=

28、AÇBÇC

29、=

30、AÇBÇD

31、=

32、BÇCÇD

33、=

34、AÇBÇCÇD

35、=0,

36、AÈBÈCÈD

37、=24。对集合A,B,C,D应用容斥原理,并代如入已知条件得方程24=37-14+

38、AÇCÇD

39、于是

40、AÇCÇD

41、=1,这说明同时会说英、德、法语的人只有1人。设只会说英、日、德、法语的人数分别是x1,x2

42、,x3,x4,则x1=

43、A

44、-

45、(BÈCÈD)ÇA

46、=

47、A

48、-

49、(BÇA)È(CÇA)È(AÇD)

50、对BÇA,CÇA,AÇD应用容斥原理,得x1=4。同理可求出:x2=3,x3=3,x4=2。6.设A,B是两个集合,问在什么条件下有A´BÍA成立?等号能成立吗?解:当A或B为空集时能够成立;当A为空集时等号能够成立。2.设A是m元集合,B是n元集合。问A到B共有多少个不同的二元关系?设A={a,b},B={1,2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。