4遗传算法与函数优化

4遗传算法与函数优化

ID:15391861

大小:188.34 KB

页数:13页

时间:2018-08-03

4遗传算法与函数优化_第1页
4遗传算法与函数优化_第2页
4遗传算法与函数优化_第3页
4遗传算法与函数优化_第4页
4遗传算法与函数优化_第5页
资源描述:

《4遗传算法与函数优化》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、第四章遗传算法与函数优化4.1研究函数优化的必要性:首先,对很多实际问题进行数学建模后,可将其抽象为一个数值函数的优化问题。由于问题种类的繁多,影响因素的复杂,这些数学函数会呈现出不同的数学特征。除了在函数是连续、可求导、低阶的简单情况下可解析地求出其最优解外,大部分情况下需要通过数值计算的方法来进行近似优化计算。其次,如何评价一个遗传算法的性能优劣程度一直是一个比较难的问题。这主要是因为现实问题种类繁多,影响因素复杂,若对各种情况都加以考虑进行试算,其计算工作量势必太大。由于纯数值函数优化问题不包含有某一具体应用领域中的专门知识,它们便于不同应用领域中的研究人员能够进行相

2、互理解和相互交流,并且能够较好地反映算法本身所具有的本质特征和实际应用能力。所以人们专门设计了一些具有复杂数学特征的纯数学函数,通过遗传算法对这些函数的优化计算情况来测试各种遗传算法的性能。4.2评价遗传算法性能的常用测试函数在设计用于评价遗传算法性能的测试函数时,必须考虑实际应用问题的数学模型中所可能呈现出的各种数学特性,以及可能遇到的各种情况和影响因素。这里所说的数学特性主要包括:●连续函数或离散函数;●凹函数或凸函数;●二次函数或非二次函数;●低维函数或高维函数;●确定性函数或随机性函数;●单峰值函数或多峰值函数,等等。下面是一些在评价遗传算法性能时经常用到的测试函数

3、:(1)DeJong函数F1:这是一个简单的平方和函数,只有一个极小点f1(0,0,0)=0。(1)DeJong函数F2:这是一个二维函数,它具有一个全局极小点f2(1,1)=0。该函数虽然是单峰值的函数,但它却是病态的,难以进行全局极小化。(2)DeJong函数F3:这是一个不连续函数,对于区域内的每一个点,它都取全局极小值。(1)DeJong函数F4:这是一个含有高斯噪声的4次函数,当不考虑噪声的影响时,它具有一个全局极小值f4(0,0,…,0)=0。(2)DeJong函数F5:这是一个多峰值函数,它总共有25个局部极小点,其中有一个是全局极小点,全局极小值为f5(-3

4、2,-32)=0.998。(3)Shaffer函数F6:该函数在其定义域内只具有一个全局极小点f6(0,0)=0。(1)Shaffer函数F7:该函数在其定义域内只具有一个全局极小点f7(0,0)=0。(2)Goldstein-Price函数:该函数在其定义域内只具有一个全局极小点f(0,-1)=3。(3)Shubert函数:这是一个多峰值函数,在其定义域内它总共有760个局部最小点,其中的18个点是全局最小点,全局最小值为f=-186.731。(4)六峰值驼背函数(Six-humpCamelBackFunction):该函数共有六个局部极小点,其中(-0.0898,0.7

5、126)和(0.0898,-0.7126)为全局最小点,最小值为f(-0.0898,0.7126)=f(0.0898,-0.7126)=-1.031628。(5)带有复杂约束条件的函数(之一):该函数的全局最小点为:f(1,1,1,1,1,1,1,1,3,3,3,1)=-15。(1)带有复杂约束条件的函数(之二):该函数的全局最大点为:f(1,0,0)=2.471428。4.3DeJong的研究结论DeJong用来进行函数优化问题研究的研究对象是前面所介绍的DeJong测试函数F1~F5。他采用了下面的一些研究方法:1.编码方法用二进制编码符号串来表示个体。2.算法的影响参

6、数●群体大小M;●交叉概率pc;●变异概率pm;●代沟G。3.算法种类(子代群体复制策赂)●R1:基本遗传算法(比例选择、单点交叉、基本位变异);●R2:保留最佳个体模型;●R3:期望值模型;●R4:保留最佳期望值模型;●R5:排挤因子模型;●R6:广义交叉模型。群体规模对离线性能的影响(优化策略为R1,测试函数为F1)群体规模对等位基因损失的影响(优化策略为R1,测试函数为F1)变异概率对等位基因损失的影响(优化策略为R1,测试函数为F1)群体规模对在线性能的影响(优化策略为R1,测试函数为F1)变异概率对在线性能的影响(优化策略为R1,测试函数为F1)变异概率对离线性能

7、的影响(优化策略为R1,测试函数为F1)优化策略R1,R2,R3的离线性能比较(测试函数为F1)优化策略R1,R2,R3在基因损失方面的性能比较(测试函数为F1)排挤因子对离线性能的影响(优化策略为R5,测试函数为5)优化策略R1,R2,R3的在线性能比较(测试函数为F1)经过仔细分析和计算,DeJong得到了下述几条重要的结论:结论1群体的规模越大,遗传算法的离线性能越好,越容易收敛。结论2规模较大的群体,遗传算法的初始在线性能较差;而规模较小的群体,遗传算法的初始在线性能较好。结论3虽然变异概率的增大也会增加群

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。