欢迎来到天天文库
浏览记录
ID:15338271
大小:154.00 KB
页数:3页
时间:2018-08-02
《立体几何中的距离问题(叶小兵)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、距离问题一.点到平面的距离(如图1):1.向量法:平面α的法向量为n,点P是平面α外一点,点M为平面α内任意一点,则点P到平面α的距离d就是在向量n方向射影的绝对值,即d=.2.直接法:确定垂足的位置3.等体积法:同一个三棱锥,从不同的角度选择底和高计算体积并加以比较即可。二.异面直线的距离(如图2):1.向量法:设向量n与两异面直线a、b都垂直,M∈a、P∈b,则两异面直线a、b间的距离d就是在向量n方向射影的绝对值,即d=2.定义:关键确定公垂线段(2)转化为直线和平面间距离(过a而与b平行的平面)(3)转化为平面间距离(4)极值法三.线到平面的距离(如
2、图3):平面α∥直线l,平面α的法向量为n,点M∈α、P∈l,平面α与直线l间的距离d就是在向量n方向射影的绝对值,即d=.(4)平面到平面的距离(如图4):平面α∥β,平面α的法向量为n,点M∈α、P∈β,平面α与平面β的距离d就是在向量n方向射影的绝对值,即d=.[例2]正方体ABCD—A1B1C1D1的棱长为1,求异面直线A1C1与AB1间的距离.命题意图:本题主要考查异面直线间距离的求法,属★★★★级题目.知识依托:求异面直线的距离,可求两异面直线的公垂线,或转化为求线面距离,或面面距离,亦可由最值法求得.错解分析:本题容易错误认为O1B是A1C与A
3、B1的距离,这主要是对异面直线定义不熟悉,异面直线的距离是与两条异面直线垂直相交的直线上垂足间的距离.技巧与方法:求异面直线的距离,有时较难作出它们的公垂线,故通常采用化归思想,转化为求线面距、面面距、或由最值法求得.解法一:如图,连结AC1,在正方体AC1中,∵A1C1∥AC,∴A1C1∥平面AB1C,∴A1C1与平面AB1C间的距离等于异面直线A1C1与AB1间的距离.连结B1D1、BD,设B1D1∩A1C1=O1,BD∩AC=O∵AC⊥BD,AC⊥DD1,∴AC⊥平面BB1D1D∴平面AB1C⊥平面BB1D1D,连结B1O,则平面AB1C∩平面BB1D
4、1D=B1O作O1G⊥B1O于G,则O1G⊥平面AB1C∴O1G为直线A1C1与平面AB1C间的距离,即为异面直线A1C1与AB1间的距离.在Rt△OO1B1中,∵O1B1=,OO1=1,∴OB1==∴O1G=,即异面直线A1C1与AB1间距离为.解法二:如图,在A1C上任取一点M,作MN⊥AB1于N,作MR⊥A1B1于R,连结RN,∵平面A1B1C1D1⊥平面A1ABB1,∴MR⊥平面A1ABB1,MR⊥AB1∵AB1⊥RN,设A1R=x,则RB1=1-x∵∠C1A1B1=∠AB1A1=45°,∴MR=x,RN=NB1=(0<x<1∴当x=时,MN有最小值
5、即异面直线A1C1与AB1距离为.二、典型例题例1:如图5,已知正方体的棱长为1,求异面直线与的距离。练习:如图5,已知正方体的棱长为1,求面对角线与体对角线的距离。
此文档下载收益归作者所有