数据标准化.归一化处理

数据标准化.归一化处理

ID:15333834

大小:81.50 KB

页数:10页

时间:2018-08-02

数据标准化.归一化处理_第1页
数据标准化.归一化处理_第2页
数据标准化.归一化处理_第3页
数据标准化.归一化处理_第4页
数据标准化.归一化处理_第5页
资源描述:

《数据标准化.归一化处理》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、数据的标准化在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋化处理和无量纲化处理两个方面。数据同趋化处理主要解决不同性质数据问题,对不同性质指标直接加总不能正确反映不同作用力的综合结果,须先考虑改变逆指标数据性质,使所有指标对测评方案的作用力同趋化,再加总才能得出正确结果。数据无量纲化处理主要解决数据的可比性。去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权。数据标准化的

2、方法有很多种,常用的有“最小—最大标准化”、“Z-score标准化”和“按小数定标标准化”等。经过上述标准化处理,原始数据均转换为无量纲化指标测评值,即各指标值都处于同一个数量级别上,可以进行综合测评分析。  一、Min-max标准化min-max标准化方法是对原始数据进行线性变换。设minA和maxA分别为属性A的最小值和最大值,将A的一个原始值x通过min-max标准化映射成在区间[0,1]中的值x',其公式为:新数据=(原数据-极小值)/(极大值-极小值)二、z-score标准化这种方法基于原始数据的均值(mean)和标准差

3、(standarddeviation)进行数据的标准化。将A的原始值x使用z-score标准化到x'。z-score标准化方法适用于属性A的最大值和最小值未知的情况,或有超出取值范围的离群数据的情况。新数据=(原数据-均值)/标准差spss默认的标准化方法就是z-score标准化。用Excel进行z-score标准化的方法:在Excel中没有现成的函数,需要自己分步计算,其实标准化的公式很简单。步骤如下:求出各变量(指标)的算术平均值(数学期望)xi和标准差si;.进行标准化处理:zij=(xij-xi)/si,其中:zij为标准

4、化后的变量值;xij为实际变量值。将逆指标前的正负号对调。标准化后的变量值围绕0上下波动,大于0说明高于平均水平,小于0说明低于平均水平。三、Decimalscaling小数定标标准化这种方法通过移动数据的小数点位置来进行标准化。小数点移动多少位取决于属性A的取值中的最大绝对值。将属性A的原始值x使用decimalscaling标准化到x'的计算方法是:x'=x/(10*j)其中,j是满足条件的最小整数。例如假定A的值由-986到917,A的最大绝对值为986,为使用小数定标标准化,我们用1000(即,j=3)除以每个值,这样,-

5、986被规范化为-0.986。注意,标准化会对原始数据做出改变,因此需要保存所使用的标准化方法的参数,以便对后续的数据进行统一的标准化。除了上面提到的数据标准化外还有对数Logistic模式、模糊量化模式等等:对数Logistic模式:新数据=1/(1+e^(-原数据))模糊量化模式:新数据=1/2+1/2sin[派3.1415/(极大值-极小值)*(X-(极大值-极小值)/2)],X为原数据数据归一化归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。归一化是为了加快训练网络的收敛性,可以不进

6、行归一化处理归一化的具体作用是归纳统一样本的统计分布性。归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。归一化有同一、统一和合一的意思。无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,归一化是同一在0-1之间的统计概率分布;SVM是以降维后线性划分距离来分类和仿真的,因此时空降维归一化是统一在-1--+1之间的统计坐标分布。当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习速度很慢。为了

7、避免出现这种情况,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于0或与其均方差相比很小。归一化是因为sigmoid函数的取值是0到1之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理。所以这样做分类的问题时用[0.90.10.1]就要比用要好。但是归一化处理并不总是合适的,根据输出值的分布情况,标准化等其它统计变换方法有时可能更好。主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。归一化方法(NormalizationM

8、ethod)1。把数变为(0,1)之间的小数主要是为了数据处理方便提出来的,把数据映射到0~1范围之内处理,更加便捷快速,应该归到数字信号处理范畴之内。2。把有量纲表达式变为无量纲表达式归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。