matlab基于腐蚀和膨胀的边缘检测

matlab基于腐蚀和膨胀的边缘检测

ID:1531578

大小:406.00 KB

页数:10页

时间:2017-11-12

matlab基于腐蚀和膨胀的边缘检测_第1页
matlab基于腐蚀和膨胀的边缘检测_第2页
matlab基于腐蚀和膨胀的边缘检测_第3页
matlab基于腐蚀和膨胀的边缘检测_第4页
matlab基于腐蚀和膨胀的边缘检测_第5页
资源描述:

《matlab基于腐蚀和膨胀的边缘检测》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Matlab基于腐蚀和膨胀的边缘检测文/天神 一.课题背景:形态学运算只针对二值图像(二进制图像),并依据数学形态学(MathermaticalMorphogy)集合论方法发展起来的图像处理方法,起源于岩相对岩石结构的定量描述工作,在数字图像处理和机器视觉领域中得到了广泛的应用,形成了一种独特的数字图像分析方法和理论。数学形态学是图像处理和模式识领域的新方法,其基本思想是:用具有一定形态的结构元素去量度和提取图像中的对应形状,以达到图像分析和识别的目的。优势有以下几点:有效滤除噪声,保留图像中原有信息,算法易于用并行处理方法

2、有效实现(包括硬件实现),基于数学形态学的边缘信息提取处理优于基于微分运算的边缘提取算法,提取的边缘比较平滑,提取的图像骨架也比较连续,断点少。 二、课题相关原理:形态学基本运算:特殊领域运算形式——结构元素(StructureElement),在每个像素位置上与二值图像对应的区域进行特定的逻辑运算。运算结果是输出图像的相应像素。运算效果取决于结构元素大小内容以及逻辑运算性质。常见形态学运算有腐蚀(Erosion)和膨胀(Dilation)两种。集合论是数学形态学的基础。有集合、元素、子集、并集、补集、位移、映像(镜像对称)

3、、差集等集合的基本概念。对象和结构元素的3种关系:『对象X(Object)、结构元素B(StructureElement)』BincludeinX包含于、BhitX击中(不全包含)、BmissX 击不中(不包含)平移、对称集:Bx=Uy{x+y} B^=Uy{-y}腐蚀:一种消除边界点,使边界向内部收缩的过程。利用它可以消除小而且无意义的物体。B对X腐蚀所产生的二值图像E是满足以下条件的点(x,y)的集合:如果B的原点平移到点(x,y),那么B将完全包含于X中。膨胀:将与物体接触的所有背景点合并到该物体中,使边界向外部扩张的

4、过程。利用它可以填补物体中的空洞。B对X膨胀所产生的二值图像D是满足以下条件的点(x,y)的集合:如果B的原点平移到点(x,y),那么它与X的交集非空。腐蚀和膨胀运算中存在对偶原理:X⊕B,它是所有满足以下条件的点X'的集合:在B中存在一点y,而且在X中存在一点x,使得x'=x+y。基本运算:1.开运算(先腐蚀后膨胀的过程):利用它可以消除小物体,在纤细点处分离物体,平滑较大物体边界,但同时并不明显改变原来物体的面积。OPEN(X,B)2.闭运算(先膨胀后腐蚀的过程):利用它可以填充物体内细小空洞,连接临近物体、平滑其边界,

5、但同时并不明显改变原来物体的面积。CLOSE(X,B)通常由于噪声的影响,图像在阈值化后所得到的边界通常都很不平滑,物体区域具有一些噪声孔,而背景区域上散布着一些小的噪声物体,连续的开和闭运算可以有效的改善这种情况,而有时,我们需要经过多次腐蚀之,后再加上相同次数的膨胀,才能产生比较好的处理效果。另外两种是3.击中,击不中变换HMT(模板严格匹配)以及4.边缘和骨架(BoundaryandSkeleton) 三、腐蚀和膨胀的Matlab实现:腐蚀:删除对象边界某些像素。膨胀:给图像中的对象边界添加像素。在操作中,输出图像中所

6、有给定像素的状态都是通过对输入图像的相应像素及邻域使用一定的规则进行确定。在膨胀操作时,输出像素值是输入图像相应像素邻域内所有像素的最大值。在二进制图像中,如果任何像素值为1,那么对应的输出像素值为1;而在腐蚀操作中,输出像素值是输入图像相应像素邻域内所有像素的最小值。在二进制图像中,如果任何一个像素值为0,那么对应的输出像素值为0。结构元素的原点定义在对输入图像感兴趣的位置。对于图像边缘的像素,由结构元素定义的邻域将会有一部分位于图像边界之外。为了有效处理边界像素,进行形态学运算的函数通常都会给出超出图像、未指定数值的像素

7、指定一个数值,这样就类似于函数给图像填充了额外的行和列。对于膨胀和腐蚀操作,它们对像素进行填充的值是不同的。对于二进制图像和灰度图像,膨胀和腐蚀操作使用的填充方法如下表:腐蚀和膨胀填充图像规则表          规                     则腐蚀 超出图像边界的像素值定义为该数据类型允许的最大值,对于二进制图像,这些像素值设置为1;对于灰度图像,unit8类型的最小值也为255。膨胀 超出图像边界的像素值定义为该数据类型允许的最小值,对于二进制图像,这些像素值设置为0;对于灰度图像,unit8类型的最小值也

8、为0。  通过对膨胀操作使用最小值填充和对腐蚀操作使用最大值填充,可以有效地消除边界效应(输出图像靠近边界处的区域与图像其它部分不连续)。否则,如果腐蚀操作使用最小值进行填充,则进行腐蚀操作后,输出图像会围绕着一个黑色边框。结构元素:膨胀和腐蚀操作的最基本组成部分,用于测试输出图像,通常要

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。