高中数学教学中学生思维灵活性培养的实践与体会.doc

高中数学教学中学生思维灵活性培养的实践与体会.doc

ID:14882618

大小:25.50 KB

页数:3页

时间:2018-07-30

高中数学教学中学生思维灵活性培养的实践与体会.doc_第1页
高中数学教学中学生思维灵活性培养的实践与体会.doc_第2页
高中数学教学中学生思维灵活性培养的实践与体会.doc_第3页
资源描述:

《高中数学教学中学生思维灵活性培养的实践与体会.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、高中数学教学中学生思维灵活性培养的实践与体会现代教育强调“知识结构”与“学习过程”,目的在于发展学生的思维能力,而把知识作为思维过程的材料和媒介.只有把掌握知识、技能作为中介来发展学生的思维品质才符合素质教育的基本要求.数学知识可能在将来会遗忘,但思维品质的培养会影响学生的一生,思维品质的培养是数学教育的价值得以真正实现的理想途径.高中学生一般年龄为15—18岁,处于青年初期.他们的身心急剧发展、变化和成熟,学习的内容更加复杂、深刻,生活更加丰富多采.这种巨大的变化对高中学生的思维发展提出了更高的

2、要求.研究表明,从初中二年级开始,学生的思维由经验型水平向理论型水平转化,到高中一、二年级,逐步趋向成熟.作为高中教学教师,应抓住学生思维发展的飞跃时期,利用成熟期前可塑性大的特点,做好思维品质的培养工作,使学生的思维得到更好的发展.教育心理学理论认为:思维是人脑对事物本质和事物之间规律性关系概括的间接的反映.思维是认知的核心成分,思维的发展水平决定着整个知识系统的结构和功能.因此,开发高中学生的思维潜能,提高思维品质,具有十分重大的意义.思维品质主要包括思维的灵活性、广阔性、敏捷供、深刻性、独创

3、性和批判性等几个方面.思维的灵活性是建立在思维广阔性和深刻性的基础上,并为思维敏捷性、独创性和批判性提供保证的良好品质.在人们的工作、生活中,照章办事易,开拓创新难,难就难在缺乏灵活的思维.所以,思维灵活性的培养显得尤为重要.思维的灵活性指思维活动的灵活程度,指善于根据事物的发展变化,及时地用新的观点看待已经变化了的事物,并提出符合实际的解决问题的新设想、新方案和新方法.学生思维的灵活性主要表现于:(1)思维起点的灵活:能从不同角度、不同层次、不同方法根据新的条件迅速确定思考问题的方向.(2)思维

4、过程的灵活:能灵活运用各种法则、公理、定理、规律、公式等从一种解题途径转向另一种途径.(3)思维迁移的灵活:能举一反三,触类旁通.如何使更多的学生思维具有灵活特点呢?在教学实践中作了一些探索:一、以“发散思维”的培养提高思维灵活性美国心理学家吉尔福特(J·P·Guilford)提出的“发散思维”(divergentthinking)的培养就是思维灵活性的培养.“发散思维”指“从给定义的信息中产生信息,其着重点是从同一的来源中产生各种各样为数众多的输出,很可能会发生转换作用.”在当前的数学教学中,普

5、遍存在着比较重视集中思维的训练,而相对忽视了发散思维的培养.发散思维是理解教材、灵活运用知识所必须的,也是迎接信息时代、适应未来生活所应具备的能力.1.引导学生对问题的解法进行发散在教学过程中,用多种方法,从各个不同角度和不同途径去寻求问题的答案,用一题多解来培养学生思维过程的灵活性.通过一题多解引导学生归纳证明三角恒等式的基本方法:(1)统一函数种类;(2)统一角度;(3)统一运算.3一题多解可以拓宽思路,增强知识间联系,学会多角度思考解题的方法和灵活的思维方式.2.引导学生对问题的结论进行发散

6、对结论的发散是指确定了已知条件后没有现成的结论.让学生自己尽可能多地探究寻找有关结论,并进行求解.开放型题目的引入,可以引导学生从不同角度来思考,不仅仅思考条件本身,而且要思考条件之间的关系.要根据条件运用各种综合变换手段来处理信息、探索结论,有利于思维起点灵活性的培养,也有利于孜孜不倦的钻研精神和创造力的培养.3.引导学生对问题的条件进行发散对问题的条件进行发散是指问题的结构确定以后,尽可能变化已知条件,进而从不同角度和用不同知识来解决问题.对于等差数列的通项公式:an=a1+(n-1)d,显然

7、,四个变量中知道三个即可求另一个(解方程).如“{an}为等差数列,a1=1,d=-2.问-9为第几项”等等.然后,放手让学生自己编写题目.编题过程中.学生要对公式中变量的取值范围、变量之间的内在关系、公式的适用范围等有全面的掌握.否则,信手拈来会闹出笑话.二、以思维灵活性的提高带动思维其他品质的提高,以思维其他品质的培养来促进思维灵活性的培养由于思维的各种品质是彼此联系、密不可分的,处于有机的统一体中,所以,思维其他品质的培养能有力地促进思维灵活性的提高.1.思维的深刻性指思维过程的抽象程度,指

8、是否善于从事物的现象中发现本质,是否善于从事物之间的关系和联系中揭示规律.运用数形结合思想转化为求函数图家交点问题,寻求几何性质与代数方程之间的内在联系.通过知识串联、横向沟通牢牢抓住事物的本质,在思维深刻性的基础上,思维灵活性才有了用武之地.2.思维的广阔性是指善于抓住问题的各个方面,又不忽视其重要细节的思维品质.要求学生能认真分析题意,调动和选择与之相应的知识,寻找解答关键.在把握整体的前提下,侧重某一条件作为解答突破口,在思维广阔性的基础上,充分运用思维灵活性调动相关知识、技

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。