欢迎来到天天文库
浏览记录
ID:14870799
大小:136.00 KB
页数:9页
时间:2018-07-30
《高中所有的三角函数公式》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、高中三角函数公式大全2009年07月12日星期日19:27三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2A=Sin2A=2SinA•CosACos2A=Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A=3sinA-4(sinA)3cos3A=4(cosA)3-3
2、cosAtan3a=tana·tan(+a)·tan(-a)半角公式sin()=cos()=tan()=cot()=tan()==和差化积sina+sinb=2sincossina-sinb=2cossincosa+cosb=2coscoscosa-cosb=-2sinsintana+tanb=积化和差sinasinb=-[cos(a+b)-cos(a-b)]cosacosb=[cos(a+b)+cos(a-b)]sinacosb=[sin(a+b)+sin(a-b)]cosasinb=[sin(a+b)-sin(a-b)]诱导公式sin(-a)=-sina
3、cos(-a)=cosasin(-a)=cosacos(-a)=sinasin(+a)=cosacos(+a)=-sinasin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosatgA=tanA=万能公式sina=cosa=tana=其它公式a•sina+b•cosa=×sin(a+c)[其中tanc=]a•sin(a)-b•cos(a)=×cos(a-c)[其中tan(c)=]1+sin(a)=(sin+cos)21-sin(a)=(sin-cos)2其他非重点三角函数csc(a)=sec(a)=双曲函
4、数sinh(a)=cosh(a)=tgh(a)=公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公
5、式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:±α及±α与α的三角函数值之间的关系:sin(+α)=cosαcos(+α)=-sinαtan(+α)=-cotαcot(+α)=-tanαsin(-α)=cosαcos(-α)=sinαtan(-α)=
6、cotαcot(-α)=tanαsin(+α)=-cosαcos(+α)=sinαtan(+α)=-cotαcot(+α)=-tanαsin(-α)=-cosαcos(-α)=-sinαtan(-α)=cotαcot(-α)=tanα(以上k∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用A•sin(ωt+θ)+B•sin(ωt+φ)=×sin三角函数公式证明(全部)2009-07-0816:13公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)三角不等式
7、
8、a+b
9、≤
10、a
11、+
12、b
13、
14、a-b
15、≤
16、a
17、+
18、b
19、
20、a
21、≤b<=>-b≤a≤b
22、a-b
23、≥
24、a
25、-
26、b
27、-
28、a
29、≤a≤
30、a
31、一元二次方程的解-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac>0注:方程有一个实根b2-4ac<0注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos
32、(A-B)=cosAcosB+sinAsinBtan
此文档下载收益归作者所有