2015届高考数学第一轮知识点总复习配套教案24

2015届高考数学第一轮知识点总复习配套教案24

ID:14791115

大小:453.50 KB

页数:11页

时间:2018-07-30

2015届高考数学第一轮知识点总复习配套教案24_第1页
2015届高考数学第一轮知识点总复习配套教案24_第2页
2015届高考数学第一轮知识点总复习配套教案24_第3页
2015届高考数学第一轮知识点总复习配套教案24_第4页
2015届高考数学第一轮知识点总复习配套教案24_第5页
资源描述:

《2015届高考数学第一轮知识点总复习配套教案24》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第三章 三角函数、三角恒等变换及解三角形第1课时 任意角和弧度制及任意角的三角函数(对应学生用书(文)、(理)40~41页)页考情分析考点新知①了解任意角的概念;了解终边相同的角的意义.②了解弧度的意义,并能进行弧度与角度的互化.③理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.①能准确进行角度与弧度的互化.②准确理解任意角三角函数的定义,并能准确判断三角函数的符号.1.(必修4P15练习6改编)若角θ同时满足sinθ<0且tanθ<0,则角θ的终边一定落在第________象限.答案:四解析

2、:由sinθ<0,可知θ的终边可能位于第三或第四象限,也可能与y轴的非正半轴重合.由tanθ<0,可知θ的终边可能位于第二象限或第四象限,可知θ的终边只能位于第四象限.2.角α终边过点(-1,2),则cosα=________.答案:-3.已知扇形的周长是6cm,面积是2cm2,则扇形的圆心角的弧度数是________.答案:1或44.已知角α终边上一点P(-4a,3a)(a<0),则sinα=________.答案:-5.(必修4P15练习2改编)已知角θ的终边经过点P(-x,-6),且cosθ=-,则sinθ=____________,tanθ=__________

3、__.答案:- 解析:cosθ==-,解得x=.sinθ==-,tanθ=.1.任意角(1)角的概念的推广①按旋转方向不同分为正角、负角、零角.②按终边位置不同分为象限角和轴线角.(2)终边相同的角终边与角α相同的角可写成α+k·360°(k∈Z).(3)弧度制①1弧度的角:长度等于半径的圆弧所对的圆心角叫做1弧度的角.②规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,

4、α

5、=,l是以角α作为圆心角时所对圆弧的长,r为半径.③弧度与角度的换算:360°=2π弧度;180°=π弧度.④弧长公式:l=

6、α

7、r.扇形面积公式:S扇形=lr=

8、α

9、r2.2.任意

10、角的三角函数(1)任意角的三角函数定义设P(x,y)是角α终边上任一点,且

11、PO

12、=r(r>0),则有sinα=,cosα=,tanα=,它们都是以角为自变量,以比值为函数值的函数.(2)三角函数在各象限内的正值口诀是:Ⅰ全正、Ⅱ正弦、Ⅲ正切、Ⅳ余弦.3.三角函数线设角α的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M,则点M是点P在x轴上的正射影.由三角函数的定义知,点P的坐标为(cosα,sinα),即P(cosα,sinα),其中cosα=OM,sinα=MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与α的终边或其

13、反向延长线相交于点T,则tanα=AT.我们把有向线段OM、MP、AT叫做α的余弦线、正弦线、正切线.三角函数线[备课札记]题型1 三角函数的定义例1 α是第二象限角,P(x,)为其终边上一点,且cosα=x,求sinα的值.解:∵OP=,∴cosα==x.又α是第二象限角,∴x<0,得x=-,∴sinα==.已知角α终边上一点P(-,y),且sinα=y,求cosα和tanα的值.解:r2=x2+y2=y2+3,由sinα===y,∴y=±或y=0.当y=即α是第二象限角时,cosα==-,tanα=-;当y=-即α是第三象限角时,cosα==-,tanα=;当y=0

14、时,P(-,0),cosα=-1,tanα=0.题型2 三角函数值的符号及判定例2 (1)如果点P(sinθ·cosθ,2cosθ)位于第三象限,试判断角θ所在的象限;(2)若θ是第二象限角,试判断sin(cosθ)的符号.解:(1)因为点P(sinθ·cosθ,2cosθ)位于第三象限,所以sinθ·cosθ<0,2cosθ<0,即所以θ为第二象限角.(2)∵2kπ+<θ<2kπ+π(k∈Z),∴-1

15、由题意,得tanα<0且cosα>0,所以角α的终边在第四象限.题型3 弧长公式与扇形面积公式例3 已知一扇形的中心角是α,所在圆的半径是R.(1)若α=60°,R=10cm,求扇形的弧长及该弧所在的弓形面积;(2)若扇形的周长是一定值C(C>0),当α为多少弧度时,该扇形有最大面积?解:(1)设弧长为l,弓形面积为S弓.∵α=60°=,R=10,∴l=π(cm).S弓=S扇-S△=×π×10-×102·sin60°=50cm2.(2)∵扇形周长C=2R+l=2R+αR,∴R=,∴S扇=α·R2=α=·=·≤,当且仅当α=,即α=2(α=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。