处理高浓度氨氮废水硝化时亚硝酸盐积累的研究

处理高浓度氨氮废水硝化时亚硝酸盐积累的研究

ID:14682260

大小:312.00 KB

页数:9页

时间:2018-07-29

处理高浓度氨氮废水硝化时亚硝酸盐积累的研究_第1页
处理高浓度氨氮废水硝化时亚硝酸盐积累的研究_第2页
处理高浓度氨氮废水硝化时亚硝酸盐积累的研究_第3页
处理高浓度氨氮废水硝化时亚硝酸盐积累的研究_第4页
处理高浓度氨氮废水硝化时亚硝酸盐积累的研究_第5页
资源描述:

《处理高浓度氨氮废水硝化时亚硝酸盐积累的研究》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、处理高浓度氨氮废水硝化时亚硝酸盐积累的研究摘要:本论文研究的目的是确定模拟高浓度工业废水短程硝化过程中亚硝酸盐积累的最优条件,降低了硝化过程中氧的需求总量,这样可以大大地节约了曝气量。选择适宜的溶解氧浓度[DO]和PH值研究亚硝酸盐积累而不影响总氨氮的去除的可能性。硝化反应在一个2.5L活性污泥反应器中运行,添加人工废水模拟高浓度氨氮工业废水。开始时PH为7.85和溶解氧浓度5.5mg/L。反应器操作直到稳定运行取得了进水氨氮浓度为610mgN-NH4+/L的氨氮负荷率(NLR)3.3kgN-NH4+/(m3.d)。关键词:

2、硝化亚硝酸盐积累活性污泥溶解氧PH   1、介绍  生物硝化-反硝化在废水氨氮去除中使用最普遍的工艺,龙其城市污水。该工艺在高浓度氨氮工业废水处理的运用已经做了大量的研究。由于氨氧化需要大量氧气,曝气在该系统中是主要的成本。  硝化反应分两步。第一步氨氮在氨氮氧化菌作用下转化为亚硝酸盐。第二步亚硝酸在氧化菌作用下转化硝酸盐(如图1)。氧化1mol氨氮,氨氮氧化菌需要1.5mol的氧气,亚硝酸盐氧化菌需要0.5莫尔氧气。完全硝化每mol氨氮中需要2莫尔的氧气。这意味着短程硝化生成亚硝酸盐氮,每mol氨氮仅需要1.5mol氧气,

3、暗示着短程硝化比完全硝化可以节约25%的氧气。  在反硝化过程中硝酸盐转化为亚硝酸盐,然后转化为N2O3、N2O,最终生成氮气。每一步都要消耗COD。如果考虑快速反硝化,短程硝化生成亚硝酸盐等,缩短了硝化意味着反硝化需要总的COD量减少了,因为硝酸盐转化为亚硝酸盐不需要COD。  由于上述原因短程硝化生成亚硝酸盐有吸引力,因为它导致在硝化过程中需氧量减少,节约了曝气量;后面反硝化减少了COD的需求。  为了取得了短程硝化生成亚硝酸盐已经做了一些研究,但是那些成果适应于低浓度氨氮废水。目前还没有研究高浓度氨氮,主要的问题是高浓

4、度亚硝酸盐浓度,它会抑制硝化菌。  为了取得短程硝化有必要降低亚硝酸氧化菌的活性而不影响氨氮氧化菌的活性。必须采取一些措施确保氨氮氧化菌的培养有利条件。表1中动力学公式适合硝化菌,由于各个常数值不同,培养基浓度、温度、PH值和DO在不同时期对它们的活性的影响不同。另外,pH值在每步影响培养基浓度,由于酸碱平衡的发生了变化。  在那些变量中,基质浓度不是一个运行参数,因为在废水处理中它是一个客观变量。温度对两种类型细菌的生长率的影响不同:在高温时氨氮氧化菌比亚硝酸氧化菌有更高的生长率。在SHARON工艺后这是真正思想。然而在大

5、多数情况下温度在整个反应器中是一个不容易修改和控制的参数,主要是经济角度考虑。因此PH值和DO浓度是主要运行变量去控制系统。  这篇论文的目的是研究PH值和DO浓度在硝化过程中对亚硝酸盐积累的影响,这样的话,可以减少大量的曝气量。而且本工艺在反硝化过程中额外地节约COD量。          NH4++3/2O2   O2-+H2O+2H+    氨氮氧化菌          N02-+1/2O2  NO3-            亚硝酸氧化菌  Fig.1.硝化中氨氮的转换    动力学系数随着温度变化,这种关系在这里没有

6、考虑。际生长率;μmax:最大实际生长率;KSH:未电离基质饱和系数;KIH:未电离基质抑制系数;[O2]:溶解氧浓度;e(AE/T)::离解基质平衡常数,AE是激活能量,T是绝对温度。  2、材料和方法  2.1试验搭建  活性污泥单元由一个有效容积2.5L反应器和外部沉淀器组成(图2)。通过调整空气流量来控制曝气达到所需要得溶解氧浓度。通过加入浓度为80g/L的NaHCO3溶液自动控制PH值,NaHCO3溶液用作PH缓冲剂和硝化菌碳源。温度保持在30℃,加入到反应器的污泥来自于一个运行了一年多的硝化活性污泥反应器。   

7、 图2:活性污泥单元实验启动示意图:(1)进水池,(2)进水水泵,(3)重碳酸盐容器,(4)重碳酸盐水泵,(5)pH值控制器,(6)pH仪表,(7)气流管,(8)反应器,(9)反应器进水口,(10)反应器进水口,(11)反应器出水口。  启动的反应器到稳定运行共运行了175天。水力停留时间为5.7小时,如果该系统维持两天(4.2个水力停留周期),可以认为取得了稳定运行。人工废水的氨氮浓度为610mgN-NH4+/L,氨负荷率(NLR)为3.3kgN-NH4+/m3.d。用自来水稀释浓缩的人工废水到所需要的浓度。浓缩氨氮废水(

8、10gN-NH4+/L)的成分如表2所示。在试验开始时,pH和DO浓度分别保持在7.85和5.5mg/L。    70天后稳定运行取得,去除率没有太大的变化。启动后,pH值和DO浓度在逐步变化如表3所示。      图3硝化单元启动    第一步研究,在7.85-6.35范围内逐步改变pH

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。