弹性模量的测定整理

弹性模量的测定整理

ID:14544100

大小:1.67 MB

页数:10页

时间:2018-07-29

弹性模量的测定整理_第1页
弹性模量的测定整理_第2页
弹性模量的测定整理_第3页
弹性模量的测定整理_第4页
弹性模量的测定整理_第5页
资源描述:

《弹性模量的测定整理》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、弹性模量的定义及其相互关系材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量(ElasticModulus)。弹性模量的单位是GPa。“弹性模量”是描述物质弹性的一个物理量,是一个总称,包括“杨氏模量”、“剪切模量”、“体积模量”等。所以,“弹性模量”和“体积模量”是包含关系。一般地讲,对弹性体施加一个外界作用(称为“应力”)后,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。线应变:对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL除以原长L,称为“线应变”。线应力除以线应

2、变就等于杨氏模量E=(F/S)/(dL/L)。剪切应变:对一块弹性体施加一个侧向的力f(通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。剪切应力除以剪切应变就等于剪切模量G=(f/S)/a。体积应变:对弹性体施加一个整体的压强P,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V称为“体积应变”,体积应力除以体积应变就等于体积模量:K=P/(-dV/V)。意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作

3、用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。说明:弹性模量只与材料的化学成分有关,与其组织变化无关,与热处理状态无关。各种钢的弹性模量差别很小,金属合金化对其弹性模量影响也很小。泊松比(Poisson'sratio),以法国数学家SimeomDenisPoisson为名,是横向应变与纵向应变之比值它是反映材料横向变形的弹性常数。在材料的比例极限内,由均匀分布的纵向应力所引起的横向应变与相应的纵向应变之比的绝对值。比如,一杆受拉伸时,其轴向伸长伴随着横向收缩(反之亦然),而横向

4、应变e'与轴向应变e之比称为泊松比ν。泊松比ν与杨氏模量E及剪切模量G之间的关系材料弹性模量的测试方法弹性模量的测试有三种方法:静态法、波传播法、动态法。静态法测试的是材料在弹性变形区间的应力-应变,静态法指在试样上施加一恒定的弯曲应力,测定其弹性弯曲挠度,根据应力和应变计算弹性模量。静态法属于对试样具有破坏性质的一种方法,不具有重复测试的机会,且测试精度低,测试结果波动大。另外,静态法只能对材料的杨氏模量进行测定,不能测试材料的剪切模量及泊松比。其主要缺点是:1.应力加载的速度会影响弹性模量的数值2.脆性材料如陶瓷无法测量3.不能在高温下测试.在高温下,材料发生蠕变,使得

5、应变测试值增大。超声波法:测试超声波在试样中的传播时间及试样长度得到纵向或横向传播速度,然后计算求得弹性模量数值。这种方法所用设备复杂、换能器转变温度低且价格昂贵,普遍应用受到限制。动态法(又称共振法或声频法):动态法是指利用很小的外力使试样振动,通过测试试样的基频求得弹性模量,或者通过测试超声波或声波在试样中的传播速度计算得出材料弹性模量。动态法由于施加于试样上是作周期性变化力非常小,测试后材料无任何损伤,可进行反复测试,也可用于其它性能测试,故为无损检测。测试试样的共振频率,材料的固有频率近似于共振频率,而根据固有频率可以计算出弹性模量。该法适用于各种金属及非金属(脆性

6、)材料的测量,测定的温度范围可从液氮温度至3000℃左右。动态法可对一个试样在不同温度下连续测定,获得完整的温度与弹性模量曲线,这使得测试工作大大简便。各种测量方法原理如下:(1)静态法测量弹性模量原理方法:对于棒状物体(或金属丝)仅受轴向外力作用而发生伸长的形变(称拉伸形变)。设一均匀金属丝截面积是S、长度是L,沿长度方向受一个外力F后金属丝伸长ΔL。单位面积上的垂直作用力F/S称为正应力,金属丝的相对伸长称为线应变。实验结果指出,在弹性形变范围内,正应力与线应变成正比,即这个规律称为胡克定律。适中的比例系数称作材料的弹性模量。它表征材料本身的性质,E越大的材料,要使它发

7、生一定的相对形变所需的单位横截面积上作用力也越大。本实验测量的是金属丝或棒材的弹性模量,如果测得金属丝或棒材的直径为d,则可将上式进一步写为测量金属丝或棒材的弹性模量的方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施加力F,测出其相应的伸长量ΔL,即可求出E。由于的值很小于是要用到光杠杆原理来放大达到测量的目的。光杠杆的原理见下图。增(减)砝码时,金属丝将伸长(或缩短)ΔL,光杠杆的后足尖也随着圆柱体C一道下降(或上升)ΔL,而前面两足保持不动,于是主杆转过一角度θ,同时平面镜的法线也转过相同的角度θ。用望远

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。