欢迎来到天天文库
浏览记录
ID:14497607
大小:122.50 KB
页数:8页
时间:2018-07-29
《基于系统动力学模型的库存控制机理研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、基于系统动力学模型的库存控制机理研究桂寿平朱强吕英俊桂程飞摘要应用系统动力学的原理和方法分析了库存控制系统。建立了库存控制系统动力学模型,利用软件提供的模拟环境,对模型进行了运行和结果分析。关键词系统动力学;库存;SD模型 11 前言 物资流通的经济效益是提高全社会经济效益的一个重要因素。一般来说库存物资过多会影响企业的经济效益,由于物价波动及存在的某些物资短缺,许多企业在不同程度上对一些关键物资作合理存储。一般说来,物资供应保证率与库存物资的数量成正比。但是,库存物资过多,却影响企业的
2、经济效益。因此确定合理的库存量对保证物资供应和提高企业的经济效益有着重要的影响。本文利用系统动力学的定性分析和定量分析相结合的原理和方法建立库存控制系统的模型,并以计算机为工具,进行仿真试验和计算。所获得的信息被用来分析和研究系统的结构和行为,为正确决策提供科学的依据。 22 库存控制模型的系统动力学仿真程序框架图 库存控制模型的系统动力学仿真程序框图如图1所示。根据仿真程序框架图,可知系统动力学的仿真实验过程如下:1)确定系统目标:主要包括预测系统的期望状态、观测系统的特征、找出系统中
3、的问题所在、描述与问题有关的系统状态、划定问题的范围和边界、选择适当的变量等。2)分析系统中的因果关系:描述问题的有关因素、解释各因素间的内在关系、画出因果关系图、隔离和分析反馈环路及它们的作用。3)建立系统动力学模型:建立流图、构造DYANAMO语言方程式。4)计算机模拟:将DYANAMO语言方程式和原始数据及相关数据(变量)在计算机上多方案模拟实验,得出结果,绘制结果曲线图,修改程序(方程式),调整数据(变量),进行反复模拟实验。5)分析结果:通过对结果的分析,不仅可发现系统的构造错误和缺陷,而
4、且还可找出错误和缺陷的原因。根据结果分析情况,确定是否对模型进行修正,然后再做仿真实验,直至得到满意的结果为止。图1系统动力学程序框图 13 库存控制系统动力学模型的建立 从库存控制系统的因果关系图可以得到系统中各个部分相互影响的基本关系,便于对整个系统的发展情况有一大致的了解。图2库存控制模型的因果关系图。图中带箭头的的线段为因果链(Link),表明了两个要素的因果关系。加了正负符号的因果链可以表明相互影响的性质,正号表明箭头指向的变量将随箭头源发的变量的增加而增加,减少而减少;而负号
5、则表明变量间取与此相反的关系。图2库存控制系统的因果关系图 从图2中可以看到整个模型是一个负反馈环,负反馈环控制环中的变量趋于稳定。正是由于负反馈环的存在,使得库存控制中避免出现订货量的激增导致系统的恶化。图2仅是描述了反馈结构的基本方面,不能表示不同性质变量的区别,必须进一步运用流图来表示。通过库存控制模型的因果关系图可画出它的流图(见图3)。图3库存控制系统流图 本模型中共有变量19个,其中水平变量2个,速率变量3个,辅助变量6个,常数7个,自定义变量1个。相应的构造方程(DYNAMO语言方程,
6、在软件vensim上运行)如下:库存=INTEG(进货速率-发货速率)×时间间隔+初始库存;单位:千元。订单积压=INTEG(订货速率-进货速率)×时间间隔+初值;单位:千元。订货速率=库存调节率+平均出库量;单位:千元/天。进货速率=订货积压/延迟时间;单位:千元/天。发货速率=平均出库量;单位:千元/天。库存调节率=(期望库存-库存)/库存调节时间;单位:千元/天。期望库存=库存可供天数×CLIP函数;单位:千元。CLIP函数=IFTHENELSE(物价率>常数C,库存容量决定的最大库存量,只考
7、虑平均出库量的期望库存量);当物流率大于常数C时,CLIP函数取值为库存容量决定的最大库存量,反之取只考虑平均出库量的期望库存量。单位:千元/天。常数C=0。物价率是包括物价上涨指数、利率、囤积指数、库存费用等一些指标。当物价上涨率及囤积指数大于利率和库存费用时(即物价率>0),说明库存是越大越好,这时的期望库存以最大库存量来决定。反之,以平均出库量为准可供x天(可以根据实际情况改动)的库存量作为期望库存量。突然出货需要(Test函数),由阶跃函数、斜坡函数、随机函数之一组成,通过突然出货量以上面一
8、种函数形式在一定范围内变化来分析系统其他一些变量受其影响程度。同样,可以写出其他一些变量的DYNAMO方程。 14 库存控制系统的数学描述 系统包含状态变量x1,x2,…xm;控制变量u1,u2,…ur;输出变量y1,y2,…yh;系统的动力学特征可用m个一阶微分方程组来描述:(i=1,2,…,m)输出特征可表达为:(j=1,2,…,h)令:分别为状态向量、控制向量、输出向量。向量函数分别为:与——状态方程,X∈Rm,U∈Rr——输出方程,Y∈Rh库存控制
此文档下载收益归作者所有