三角函数y=asin(ωx+φ)中的对称轴

三角函数y=asin(ωx+φ)中的对称轴

ID:14435097

大小:191.50 KB

页数:3页

时间:2018-07-28

三角函数y=asin(ωx+φ)中的对称轴_第1页
三角函数y=asin(ωx+φ)中的对称轴_第2页
三角函数y=asin(ωx+φ)中的对称轴_第3页
资源描述:

《三角函数y=asin(ωx+φ)中的对称轴》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、三角函数y=Asin(ωx+φ)中的对称轴江苏韩文美正弦函数y=sinx的对称轴是x=k+(k∈Z),它的对称轴总是经过它图象的最高点或者最低点。由于三角函数y=是由正弦函数y=sinx复合而成的,所以令=k+,就能得到y=的对称轴方程x=(k∈Z)。通过类比可以得到三角函数y=的对称轴方程x=(k∈Z)。下面通过几道典型例题来谈一谈如何应用它们的对称轴解题。1.解析式问题例1.设函数=(),图像的一条对称轴是直线,求的值。分析:正弦函数y=sinx的对称轴是x=k+,令2x+=k+,结合条件求解。解析:∵是函数y=的图像的对称轴,∴,∴,k∈Z,而,则。点评:由于对

2、称轴都是通过函数图像的最高点或者最低点的直线,所以把对称轴的方程代入到函数解析式,函数此时可能取得最大值或最小值。易错点就在于很多同学误认为由于正弦函数y=sinx的周期是2k,所以会错误的令=2k+。2.参数问题例2.如果函数y=sin2x+acos2x的图象关于直线x=-对称,则a的值为()A.B.-C.1D.-1分析:由于本题是选择题,所以解法多种多样,可以带入验证;也可以根据对称轴的通式求解,还可以根据最值求解。解法一:y=sin2x+acos2x=sin(2x+),其中cos=,sin=,由函数的图象关于x=-对称知,函数y=sin2x+acos2x在x=-

3、处取得最大值或最小值,∴sin(-)+acos(-)=±,即(1-a)=±,解得a=-1,所以应选择答案:D。点评:过函数y=Asin()图象最值点与y轴平行(或重合)的直线都是函数图象的对称轴。解法二:显然a≠0,如若不然,x=-就是函数y=sin2x的一条对称轴,这是不可能的,当a≠0时,y=sin2x+acos2x=,其中,,即tan=,函数y=cos(2x-)的图象的对称轴方程的通式为2xk=k+(k∈Z),∴xk=,令xk=-,则=-,∴=-k-,∴tan=tan(-k-)=-1,即=-1,∴a=-1为所求,所以应选择答案:D。点评:根据余弦型函数的对称轴问

4、题,结合对应的正切值的值加以分析求解,也是一种特殊的方法。解法三:∵f(x)=sin2x+acos2x的图象关于直线x=-对称,∴,令x=-,得,∴sin+acos=sin0+acos0,得a=-1,所以应选择答案:D。点评:这种解法比较巧妙,紧扣住对称性的定义,采用特殊值法代入。是不可多得的一种快捷方便的解答方法。3.单调区间问题例3.在下列区间中函数y=sin(x+)的单调增区间是()A.[,]B.[0,]C.[-,0]D.[,]分析:像这类题型,常规解法都是运用y=Asin(x+)的单调增区间的一般结论,由一般到特殊求解,既快又准确,本题倘若运用对称轴方程求单调

5、区间,则是一种颇具新意的简明而又准确、可靠的方法。解析:函数y=sin(x+)的对称轴方程是:xk=k+-=k+(k∈Z),照选择支,分别取k=-1、0、1,得一个递增或递减区间分别是[-,]或[,],对照选择支思考即知应选择答案:B。点评:一般运用正、余弦函数的对称轴方程求其单调区间,可先运用对称轴方程求其一个单调区间,然后在两端分别加上周期的整数倍即得。4.函数性质问题例4.设点P是函数的图象C的一个对称中心,若点P到图象C的对称轴上的距离的最小值,则的最小正周期是()A.2πB.πC.D.分析:根据正弦(或余弦)函数的图象的对称中心到一条对称轴的距离的最小值等于

6、周期的性质加以转化三角函数的相关性质,从而得到正确解答。解析:设点P是函数的图象C的一个对称中心,若点P到图象C的对称轴上的距离的最小值,而图象的对称中心到一条对称轴的距离的最小值等于周期,∴最小正周期为T=×4=π,即选择答案:B。点评:三角函数的对称性与其他相应的性质是紧密相关,特别和三角函数的周期性问题、单调性问题、最值问题能息息相关,要注意加以相互转化。函数y=的对称轴是函数的一条重要性质,要准确的理解函数图像实质上有无数条对称轴,它们也是有周期性的,它们的周期不是T=,而是T=,可以理解为对称轴的周期是函数周期的一半。只有准确的理解对称轴的特点,才能灵活的应

7、用对称轴解题。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。