欢迎来到天天文库
浏览记录
ID:14399444
大小:575.00 KB
页数:21页
时间:2018-07-28
《纳米薄膜技术的基础知识及纳米薄膜的应用论文--学位论文.doc》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、薄膜物理与技术大作业纳米薄膜技术的基础知识及纳米薄膜的应用11目录摘要……………………………………………………………2一、纳米薄膜的分类……………………………………………………2二、纳米薄膜的光学、力学、电磁学与气敏特性……………………3三、纳米薄膜的制备技术………………………………………………6四、纳米薄膜的应用……………………………………………………17五、参考文献……………………………………………………………19第20页共21页摘要纳米薄膜材料是一种新型材料,指由尺寸为纳米数量级(1~100n
2、m)的组元镶嵌于基体所形成的薄膜材料,它兼具传统复合材料和现代纳米材料二者的优越性,由于其特殊的结构特点,使其作为功能材料有广泛的应用价值。纳米薄膜是纳米薄膜可以改善一些机械零部件的表面性能,以减少振动,降低噪声,减小摩擦,延长寿命。这些薄膜在刀具、微机械、微电子领域作为耐磨、耐腐蚀涂层及其它功能涂层获得重要应用。目前,科研人员已从单一材料的纳米薄膜转向纳米复合薄膜的研究,薄膜的厚度也由数微米发展到数纳米的超薄膜。同时,纳米薄膜的表面微观结构,纳米薄膜对敏化电池光电效率的影响及结晶机制与薄膜对电磁波
3、屏蔽特性的影响都有至关重要的科学贡献。关键词:纳米薄膜性能功能一、纳米薄膜的分类(1)据用途划分纳米薄膜可按用途分为纳米功能薄膜和纳米结构薄膜。纳米功能薄膜是利用纳米粒子所具有的力、电、光、磁等方面的特性,通过复合制作出同基体功能截然不同的薄膜。纳米结构薄膜则是通过纳米粒子复合,对材料进行改性,是以提高材料在机械性能为主要目的的薄膜。(2)据层数划分按纳米薄膜的沉积层数,可分为纳米(单层)微薄膜和纳米多层薄膜。其中,纳米多层薄膜包括我们平常所说的“超晶格”薄膜,它一般是由几种材料交替沉积而形成的结构
4、交替变化的薄膜,各层厚度均为nm级。组成纳米(单层)薄膜和纳米多层薄膜的材料可以是金属、半导体、绝缘体、有机高分子,也可以是它们的多种组合,如金属一半导体、金属一绝缘体、半导体一绝缘体、半导体一高分子材料等,而每一种组合都可衍生出众多类型的复合薄膜。(3)据微结构划分第20页共21页按纳米薄膜的微结构,可分为含有纳米颗粒的基质薄膜和nm尺寸厚度的薄膜。纳米颗粒基质薄膜厚度可超出nm量级,但由于膜内有纳米颗粒或原子团的掺人,该薄膜仍然会呈现出一些奇特的调制掺杂效应;nm尺寸厚度的薄膜,其厚度在nm量级
5、,接近电子特征散射的平均自由程,因而具有显著的量子统计特性,可组装成新型功能器件,如具有超高密度与信息处理能力的纳米信息存贮薄膜、具有典型的周期性调制结构的纳米磁性多层膜等。(4)据组分划分按纳米薄膜的组分,可分为有机纳米薄膜和无机纳米薄膜。有机纳米薄膜主要指的是高分子薄膜,而无机纳米薄膜主要指的是金属、半导体、金属氧化物等纳米薄膜。(5)据薄膜的构成与致密度划分按薄膜的构成与致密程度,可分为颗粒膜和致密膜。颗粒膜是纳米颗粒粘在一起形成的膜,颗粒间可以有极小的缝隙,而致密膜则是连续膜。(6)据应用划
6、分按纳米薄膜在实际中的应用,可分为纳米光学薄膜、纳米耐磨损与纳米润滑膜、纳米磁性薄膜、纳米气敏薄膜、纳米滤膜等。二、纳米薄膜的光学、力学、电磁学与气敏特性2.1光学性能(1)吸收光谱的“蓝移”、宽化与“红移”由于具有小尺寸效应、量子尺寸效应以及界面效应,因而,当膜厚度减小时,大多数纳米薄膜能隙将有所增大,会出现吸收光谱的蓝移与宽化现象。如纳米TiOE/SnO:纳米颗粒膜具有特殊的紫外.可见光吸收光谱,其吸收光谱较块体发生了显著的“蓝移”与宽化,抗紫外线性能和光学透过性良好。尽管如此,在另外一些纳米薄
7、膜[中,由于随着晶粒尺寸的减小,内应力的增加以及缺陷数量增多等因素,材料的电子波函数出现了重叠或在能级间出现了附加能级,又使得这些纳米薄膜的吸收光谱发生了“红移”。 透明导电氧化物(TCOs,transparent conductiveoxides)具有宽带隙(>3.0eV)、可见光区高透光性(>80%)和高导电性(10-5~10-3Ω·第20页共21页cm)等优点[1],广泛应用于薄膜太阳电池、平板显示器和透明薄膜晶体管等[2,3]领域。ZnO是一种新型的直接宽带隙(室温带隙为3.37eV)半导体
8、材料,激子束缚能(60meV)大、化学及热稳定性良好。掺杂ZnO[4](掺B、Al、Ga和In等)具有与ITO相比拟的电学和光学性能,以及价廉、无毒和易制备等优势,是一种有竞争力的透明导电薄膜材料。其中,B掺ZnO(ZnO:B)在近红外区透光性高于ZnO:Al[5~7],且其热稳定性[5]优于ZnO:Al[6]、ZnO:Ga[7]等,既能扩展太阳电池器件吸收光谱范围[8~10],又能保证器件有较长的使用寿命[6]。ZnO的掺杂(尤其是p型掺杂)是其研发中的瓶颈[11]
此文档下载收益归作者所有